ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabeq2i GIF version

Theorem rabeq2i 2757
Description: Inference from equality of a class variable and a restricted class abstraction. (Contributed by NM, 16-Feb-2004.)
Hypothesis
Ref Expression
rabeq2i.1 𝐴 = {𝑥𝐵𝜑}
Assertion
Ref Expression
rabeq2i (𝑥𝐴 ↔ (𝑥𝐵𝜑))

Proof of Theorem rabeq2i
StepHypRef Expression
1 rabeq2i.1 . . 3 𝐴 = {𝑥𝐵𝜑}
21eleq2i 2260 . 2 (𝑥𝐴𝑥 ∈ {𝑥𝐵𝜑})
3 rabid 2670 . 2 (𝑥 ∈ {𝑥𝐵𝜑} ↔ (𝑥𝐵𝜑))
42, 3bitri 184 1 (𝑥𝐴 ↔ (𝑥𝐵𝜑))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  wcel 2164  {crab 2476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-rab 2481
This theorem is referenced by:  tfis  4611  fvmptssdm  5634  suplocsrlempr  7857  suplocsrlem  7858
  Copyright terms: Public domain W3C validator