| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabeq2i | GIF version | ||
| Description: Inference from equality of a class variable and a restricted class abstraction. (Contributed by NM, 16-Feb-2004.) |
| Ref | Expression |
|---|---|
| rabeq2i.1 | ⊢ 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| rabeq2i | ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeq2i.1 | . . 3 ⊢ 𝐴 = {𝑥 ∈ 𝐵 ∣ 𝜑} | |
| 2 | 1 | eleq2i 2274 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑}) |
| 3 | rabid 2684 | . 2 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) | |
| 4 | 2, 3 | bitri 184 | 1 ⊢ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐵 ∧ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2178 {crab 2490 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-rab 2495 |
| This theorem is referenced by: tfis 4649 fvmptssdm 5687 suplocsrlempr 7955 suplocsrlem 7956 |
| Copyright terms: Public domain | W3C validator |