| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabexd | Unicode version | ||
| Description: Separation Scheme in terms of a restricted class abstraction, deduction form of rabex2 4206. (Contributed by AV, 16-Jul-2019.) |
| Ref | Expression |
|---|---|
| rabexd.1 |
|
| rabexd.2 |
|
| Ref | Expression |
|---|---|
| rabexd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabexd.1 |
. 2
| |
| 2 | rabexd.2 |
. . 3
| |
| 3 | rabexg 4203 |
. . 3
| |
| 4 | 2, 3 | syl 14 |
. 2
|
| 5 | 1, 4 | eqeltrid 2294 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-sep 4178 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rab 2495 df-v 2778 df-in 3180 df-ss 3187 |
| This theorem is referenced by: rabex2 4206 psrbasg 14551 psrelbas 14552 psr0cl 14558 psr0lid 14559 psrnegcl 14560 psrlinv 14561 psrgrp 14562 psr1clfi 14565 mplvalcoe 14567 incistruhgr 15801 |
| Copyright terms: Public domain | W3C validator |