ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabexd Unicode version

Theorem rabexd 4205
Description: Separation Scheme in terms of a restricted class abstraction, deduction form of rabex2 4206. (Contributed by AV, 16-Jul-2019.)
Hypotheses
Ref Expression
rabexd.1  |-  B  =  { x  e.  A  |  ps }
rabexd.2  |-  ( ph  ->  A  e.  V )
Assertion
Ref Expression
rabexd  |-  ( ph  ->  B  e.  _V )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    ps( x)    B( x)    V( x)

Proof of Theorem rabexd
StepHypRef Expression
1 rabexd.1 . 2  |-  B  =  { x  e.  A  |  ps }
2 rabexd.2 . . 3  |-  ( ph  ->  A  e.  V )
3 rabexg 4203 . . 3  |-  ( A  e.  V  ->  { x  e.  A  |  ps }  e.  _V )
42, 3syl 14 . 2  |-  ( ph  ->  { x  e.  A  |  ps }  e.  _V )
51, 4eqeltrid 2294 1  |-  ( ph  ->  B  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   {crab 2490   _Vcvv 2776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-sep 4178
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rab 2495  df-v 2778  df-in 3180  df-ss 3187
This theorem is referenced by:  rabex2  4206  psrbasg  14551  psrelbas  14552  psr0cl  14558  psr0lid  14559  psrnegcl  14560  psrlinv  14561  psrgrp  14562  psr1clfi  14565  mplvalcoe  14567  incistruhgr  15801
  Copyright terms: Public domain W3C validator