ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabexd Unicode version

Theorem rabexd 4189
Description: Separation Scheme in terms of a restricted class abstraction, deduction form of rabex2 4190. (Contributed by AV, 16-Jul-2019.)
Hypotheses
Ref Expression
rabexd.1  |-  B  =  { x  e.  A  |  ps }
rabexd.2  |-  ( ph  ->  A  e.  V )
Assertion
Ref Expression
rabexd  |-  ( ph  ->  B  e.  _V )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    ps( x)    B( x)    V( x)

Proof of Theorem rabexd
StepHypRef Expression
1 rabexd.1 . 2  |-  B  =  { x  e.  A  |  ps }
2 rabexd.2 . . 3  |-  ( ph  ->  A  e.  V )
3 rabexg 4187 . . 3  |-  ( A  e.  V  ->  { x  e.  A  |  ps }  e.  _V )
42, 3syl 14 . 2  |-  ( ph  ->  { x  e.  A  |  ps }  e.  _V )
51, 4eqeltrid 2292 1  |-  ( ph  ->  B  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   {crab 2488   _Vcvv 2772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-sep 4162
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rab 2493  df-v 2774  df-in 3172  df-ss 3179
This theorem is referenced by:  rabex2  4190  psrbasg  14436  psrelbas  14437  psr0cl  14443  psr0lid  14444  psrnegcl  14445  psrlinv  14446  psrgrp  14447  psr1clfi  14450  mplvalcoe  14452
  Copyright terms: Public domain W3C validator