ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabexd Unicode version

Theorem rabexd 4229
Description: Separation Scheme in terms of a restricted class abstraction, deduction form of rabex2 4230. (Contributed by AV, 16-Jul-2019.)
Hypotheses
Ref Expression
rabexd.1  |-  B  =  { x  e.  A  |  ps }
rabexd.2  |-  ( ph  ->  A  e.  V )
Assertion
Ref Expression
rabexd  |-  ( ph  ->  B  e.  _V )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    ps( x)    B( x)    V( x)

Proof of Theorem rabexd
StepHypRef Expression
1 rabexd.1 . 2  |-  B  =  { x  e.  A  |  ps }
2 rabexd.2 . . 3  |-  ( ph  ->  A  e.  V )
3 rabexg 4227 . . 3  |-  ( A  e.  V  ->  { x  e.  A  |  ps }  e.  _V )
42, 3syl 14 . 2  |-  ( ph  ->  { x  e.  A  |  ps }  e.  _V )
51, 4eqeltrid 2316 1  |-  ( ph  ->  B  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   {crab 2512   _Vcvv 2799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-sep 4202
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rab 2517  df-v 2801  df-in 3203  df-ss 3210
This theorem is referenced by:  rabex2  4230  psrbasg  14638  psrelbas  14639  psr0cl  14645  psr0lid  14646  psrnegcl  14647  psrlinv  14648  psrgrp  14649  psr1clfi  14652  mplvalcoe  14654  incistruhgr  15890
  Copyright terms: Public domain W3C validator