| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabex2 | GIF version | ||
| Description: Separation Scheme in terms of a restricted class abstraction. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.) |
| Ref | Expression |
|---|---|
| rabex2.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} |
| rabex2.2 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| rabex2 | ⊢ 𝐵 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabex2.2 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | rabex2.1 | . . 3 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜓} | |
| 3 | id 19 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 ∈ V) | |
| 4 | 2, 3 | rabexd 4193 | . 2 ⊢ (𝐴 ∈ V → 𝐵 ∈ V) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ 𝐵 ∈ V |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 {crab 2489 Vcvv 2773 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-sep 4166 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rab 2494 df-v 2775 df-in 3173 df-ss 3180 |
| This theorem is referenced by: rab2ex 4195 |
| Copyright terms: Public domain | W3C validator |