ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabswap Unicode version

Theorem rabswap 2648
Description: Swap with a membership relation in a restricted class abstraction. (Contributed by NM, 4-Jul-2005.)
Assertion
Ref Expression
rabswap  |-  { x  e.  A  |  x  e.  B }  =  {
x  e.  B  |  x  e.  A }

Proof of Theorem rabswap
StepHypRef Expression
1 ancom 264 . . 3  |-  ( ( x  e.  A  /\  x  e.  B )  <->  ( x  e.  B  /\  x  e.  A )
)
21abbii 2286 . 2  |-  { x  |  ( x  e.  A  /\  x  e.  B ) }  =  { x  |  (
x  e.  B  /\  x  e.  A ) }
3 df-rab 2457 . 2  |-  { x  e.  A  |  x  e.  B }  =  {
x  |  ( x  e.  A  /\  x  e.  B ) }
4 df-rab 2457 . 2  |-  { x  e.  B  |  x  e.  A }  =  {
x  |  ( x  e.  B  /\  x  e.  A ) }
52, 3, 43eqtr4i 2201 1  |-  { x  e.  A  |  x  e.  B }  =  {
x  e.  B  |  x  e.  A }
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1348    e. wcel 2141   {cab 2156   {crab 2452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-rab 2457
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator