ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabbi Unicode version

Theorem rabbi 2655
Description: Equivalent wff's correspond to equal restricted class abstractions. Closed theorem form of rabbidva 2727. (Contributed by NM, 25-Nov-2013.)
Assertion
Ref Expression
rabbi  |-  ( A. x  e.  A  ( ps 
<->  ch )  <->  { x  e.  A  |  ps }  =  { x  e.  A  |  ch } )

Proof of Theorem rabbi
StepHypRef Expression
1 abbi 2291 . 2  |-  ( A. x ( ( x  e.  A  /\  ps ) 
<->  ( x  e.  A  /\  ch ) )  <->  { x  |  ( x  e.  A  /\  ps ) }  =  { x  |  ( x  e.  A  /\  ch ) } )
2 df-ral 2460 . . 3  |-  ( A. x  e.  A  ( ps 
<->  ch )  <->  A. x
( x  e.  A  ->  ( ps  <->  ch )
) )
3 pm5.32 453 . . . 4  |-  ( ( x  e.  A  -> 
( ps  <->  ch )
)  <->  ( ( x  e.  A  /\  ps ) 
<->  ( x  e.  A  /\  ch ) ) )
43albii 1470 . . 3  |-  ( A. x ( x  e.  A  ->  ( ps  <->  ch ) )  <->  A. x
( ( x  e.  A  /\  ps )  <->  ( x  e.  A  /\  ch ) ) )
52, 4bitri 184 . 2  |-  ( A. x  e.  A  ( ps 
<->  ch )  <->  A. x
( ( x  e.  A  /\  ps )  <->  ( x  e.  A  /\  ch ) ) )
6 df-rab 2464 . . 3  |-  { x  e.  A  |  ps }  =  { x  |  ( x  e.  A  /\  ps ) }
7 df-rab 2464 . . 3  |-  { x  e.  A  |  ch }  =  { x  |  ( x  e.  A  /\  ch ) }
86, 7eqeq12i 2191 . 2  |-  ( { x  e.  A  |  ps }  =  { x  e.  A  |  ch } 
<->  { x  |  ( x  e.  A  /\  ps ) }  =  {
x  |  ( x  e.  A  /\  ch ) } )
91, 5, 83bitr4i 212 1  |-  ( A. x  e.  A  ( ps 
<->  ch )  <->  { x  e.  A  |  ps }  =  { x  e.  A  |  ch } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1351    = wceq 1353    e. wcel 2148   {cab 2163   A.wral 2455   {crab 2459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-ral 2460  df-rab 2464
This theorem is referenced by:  rabbidva  2727  exmidonfinlem  7194
  Copyright terms: Public domain W3C validator