ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabbi Unicode version

Theorem rabbi 2643
Description: Equivalent wff's correspond to equal restricted class abstractions. Closed theorem form of rabbidva 2714. (Contributed by NM, 25-Nov-2013.)
Assertion
Ref Expression
rabbi  |-  ( A. x  e.  A  ( ps 
<->  ch )  <->  { x  e.  A  |  ps }  =  { x  e.  A  |  ch } )

Proof of Theorem rabbi
StepHypRef Expression
1 abbi 2280 . 2  |-  ( A. x ( ( x  e.  A  /\  ps ) 
<->  ( x  e.  A  /\  ch ) )  <->  { x  |  ( x  e.  A  /\  ps ) }  =  { x  |  ( x  e.  A  /\  ch ) } )
2 df-ral 2449 . . 3  |-  ( A. x  e.  A  ( ps 
<->  ch )  <->  A. x
( x  e.  A  ->  ( ps  <->  ch )
) )
3 pm5.32 449 . . . 4  |-  ( ( x  e.  A  -> 
( ps  <->  ch )
)  <->  ( ( x  e.  A  /\  ps ) 
<->  ( x  e.  A  /\  ch ) ) )
43albii 1458 . . 3  |-  ( A. x ( x  e.  A  ->  ( ps  <->  ch ) )  <->  A. x
( ( x  e.  A  /\  ps )  <->  ( x  e.  A  /\  ch ) ) )
52, 4bitri 183 . 2  |-  ( A. x  e.  A  ( ps 
<->  ch )  <->  A. x
( ( x  e.  A  /\  ps )  <->  ( x  e.  A  /\  ch ) ) )
6 df-rab 2453 . . 3  |-  { x  e.  A  |  ps }  =  { x  |  ( x  e.  A  /\  ps ) }
7 df-rab 2453 . . 3  |-  { x  e.  A  |  ch }  =  { x  |  ( x  e.  A  /\  ch ) }
86, 7eqeq12i 2179 . 2  |-  ( { x  e.  A  |  ps }  =  { x  e.  A  |  ch } 
<->  { x  |  ( x  e.  A  /\  ps ) }  =  {
x  |  ( x  e.  A  /\  ch ) } )
91, 5, 83bitr4i 211 1  |-  ( A. x  e.  A  ( ps 
<->  ch )  <->  { x  e.  A  |  ps }  =  { x  e.  A  |  ch } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1341    = wceq 1343    e. wcel 2136   {cab 2151   A.wral 2444   {crab 2448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-ral 2449  df-rab 2453
This theorem is referenced by:  rabbidva  2714  exmidonfinlem  7149
  Copyright terms: Public domain W3C validator