Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rabbi | Unicode version |
Description: Equivalent wff's correspond to equal restricted class abstractions. Closed theorem form of rabbidva 2714. (Contributed by NM, 25-Nov-2013.) |
Ref | Expression |
---|---|
rabbi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi 2280 | . 2 | |
2 | df-ral 2449 | . . 3 | |
3 | pm5.32 449 | . . . 4 | |
4 | 3 | albii 1458 | . . 3 |
5 | 2, 4 | bitri 183 | . 2 |
6 | df-rab 2453 | . . 3 | |
7 | df-rab 2453 | . . 3 | |
8 | 6, 7 | eqeq12i 2179 | . 2 |
9 | 1, 5, 8 | 3bitr4i 211 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wceq 1343 wcel 2136 cab 2151 wral 2444 crab 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-ral 2449 df-rab 2453 |
This theorem is referenced by: rabbidva 2714 exmidonfinlem 7149 |
Copyright terms: Public domain | W3C validator |