ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabswap GIF version

Theorem rabswap 2687
Description: Swap with a membership relation in a restricted class abstraction. (Contributed by NM, 4-Jul-2005.)
Assertion
Ref Expression
rabswap {𝑥𝐴𝑥𝐵} = {𝑥𝐵𝑥𝐴}

Proof of Theorem rabswap
StepHypRef Expression
1 ancom 266 . . 3 ((𝑥𝐴𝑥𝐵) ↔ (𝑥𝐵𝑥𝐴))
21abbii 2323 . 2 {𝑥 ∣ (𝑥𝐴𝑥𝐵)} = {𝑥 ∣ (𝑥𝐵𝑥𝐴)}
3 df-rab 2495 . 2 {𝑥𝐴𝑥𝐵} = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
4 df-rab 2495 . 2 {𝑥𝐵𝑥𝐴} = {𝑥 ∣ (𝑥𝐵𝑥𝐴)}
52, 3, 43eqtr4i 2238 1 {𝑥𝐴𝑥𝐵} = {𝑥𝐵𝑥𝐴}
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1373  wcel 2178  {cab 2193  {crab 2490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-rab 2495
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator