ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabswap GIF version

Theorem rabswap 2648
Description: Swap with a membership relation in a restricted class abstraction. (Contributed by NM, 4-Jul-2005.)
Assertion
Ref Expression
rabswap {𝑥𝐴𝑥𝐵} = {𝑥𝐵𝑥𝐴}

Proof of Theorem rabswap
StepHypRef Expression
1 ancom 264 . . 3 ((𝑥𝐴𝑥𝐵) ↔ (𝑥𝐵𝑥𝐴))
21abbii 2286 . 2 {𝑥 ∣ (𝑥𝐴𝑥𝐵)} = {𝑥 ∣ (𝑥𝐵𝑥𝐴)}
3 df-rab 2457 . 2 {𝑥𝐴𝑥𝐵} = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
4 df-rab 2457 . 2 {𝑥𝐵𝑥𝐴} = {𝑥 ∣ (𝑥𝐵𝑥𝐴)}
52, 3, 43eqtr4i 2201 1 {𝑥𝐴𝑥𝐵} = {𝑥𝐵𝑥𝐴}
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1348  wcel 2141  {cab 2156  {crab 2452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-rab 2457
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator