Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfrab1 | Unicode version |
Description: The abstraction variable in a restricted class abstraction isn't free. (Contributed by NM, 19-Mar-1997.) |
Ref | Expression |
---|---|
nfrab1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2457 | . 2 | |
2 | nfab1 2314 | . 2 | |
3 | 1, 2 | nfcxfr 2309 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wcel 2141 cab 2156 wnfc 2299 crab 2452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rab 2457 |
This theorem is referenced by: repizf2 4148 rabxfrd 4454 onintrab2im 4502 tfis 4567 fvmptssdm 5580 infssuzcldc 11906 nnwosdc 11994 imasnopn 13093 |
Copyright terms: Public domain | W3C validator |