ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrab1 Unicode version

Theorem nfrab1 2677
Description: The abstraction variable in a restricted class abstraction isn't free. (Contributed by NM, 19-Mar-1997.)
Assertion
Ref Expression
nfrab1  |-  F/_ x { x  e.  A  |  ph }

Proof of Theorem nfrab1
StepHypRef Expression
1 df-rab 2484 . 2  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
2 nfab1 2341 . 2  |-  F/_ x { x  |  (
x  e.  A  /\  ph ) }
31, 2nfcxfr 2336 1  |-  F/_ x { x  e.  A  |  ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    e. wcel 2167   {cab 2182   F/_wnfc 2326   {crab 2479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rab 2484
This theorem is referenced by:  repizf2  4195  rabxfrd  4504  onintrab2im  4554  tfis  4619  fvmptssdm  5646  infssuzcldc  10325  nnwosdc  12206  imasnopn  14535
  Copyright terms: Public domain W3C validator