ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrab1 Unicode version

Theorem nfrab1 2674
Description: The abstraction variable in a restricted class abstraction isn't free. (Contributed by NM, 19-Mar-1997.)
Assertion
Ref Expression
nfrab1  |-  F/_ x { x  e.  A  |  ph }

Proof of Theorem nfrab1
StepHypRef Expression
1 df-rab 2481 . 2  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
2 nfab1 2338 . 2  |-  F/_ x { x  |  (
x  e.  A  /\  ph ) }
31, 2nfcxfr 2333 1  |-  F/_ x { x  e.  A  |  ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    e. wcel 2164   {cab 2179   F/_wnfc 2323   {crab 2476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rab 2481
This theorem is referenced by:  repizf2  4191  rabxfrd  4500  onintrab2im  4550  tfis  4615  fvmptssdm  5642  infssuzcldc  12088  nnwosdc  12176  imasnopn  14467
  Copyright terms: Public domain W3C validator