ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrab1 Unicode version

Theorem nfrab1 2657
Description: The abstraction variable in a restricted class abstraction isn't free. (Contributed by NM, 19-Mar-1997.)
Assertion
Ref Expression
nfrab1  |-  F/_ x { x  e.  A  |  ph }

Proof of Theorem nfrab1
StepHypRef Expression
1 df-rab 2464 . 2  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
2 nfab1 2321 . 2  |-  F/_ x { x  |  (
x  e.  A  /\  ph ) }
31, 2nfcxfr 2316 1  |-  F/_ x { x  e.  A  |  ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    e. wcel 2148   {cab 2163   F/_wnfc 2306   {crab 2459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rab 2464
This theorem is referenced by:  repizf2  4164  rabxfrd  4471  onintrab2im  4519  tfis  4584  fvmptssdm  5602  infssuzcldc  11954  nnwosdc  12042  imasnopn  13884
  Copyright terms: Public domain W3C validator