ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfrab1 Unicode version

Theorem nfrab1 2686
Description: The abstraction variable in a restricted class abstraction isn't free. (Contributed by NM, 19-Mar-1997.)
Assertion
Ref Expression
nfrab1  |-  F/_ x { x  e.  A  |  ph }

Proof of Theorem nfrab1
StepHypRef Expression
1 df-rab 2493 . 2  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
2 nfab1 2350 . 2  |-  F/_ x { x  |  (
x  e.  A  /\  ph ) }
31, 2nfcxfr 2345 1  |-  F/_ x { x  e.  A  |  ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    e. wcel 2176   {cab 2191   F/_wnfc 2335   {crab 2488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rab 2493
This theorem is referenced by:  repizf2  4206  rabxfrd  4516  onintrab2im  4566  tfis  4631  fvmptssdm  5664  infssuzcldc  10378  nnwosdc  12360  imasnopn  14771
  Copyright terms: Public domain W3C validator