Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfrab1 | Unicode version |
Description: The abstraction variable in a restricted class abstraction isn't free. (Contributed by NM, 19-Mar-1997.) |
Ref | Expression |
---|---|
nfrab1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2451 | . 2 | |
2 | nfab1 2308 | . 2 | |
3 | 1, 2 | nfcxfr 2303 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wcel 2135 cab 2150 wnfc 2293 crab 2446 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1434 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-11 1493 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-ext 2146 |
This theorem depends on definitions: df-bi 116 df-nf 1448 df-sb 1750 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-rab 2451 |
This theorem is referenced by: repizf2 4136 rabxfrd 4442 onintrab2im 4490 tfis 4555 fvmptssdm 5565 infssuzcldc 11873 nnwosdc 11961 imasnopn 12866 |
Copyright terms: Public domain | W3C validator |