ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabxfr Unicode version

Theorem rabxfr 4464
Description: Class builder membership after substituting an expression  A (containing  y) for  x in the class expression  ph. (Contributed by NM, 10-Jun-2005.)
Hypotheses
Ref Expression
rabxfr.1  |-  F/_ y B
rabxfr.2  |-  F/_ y C
rabxfr.3  |-  ( y  e.  D  ->  A  e.  D )
rabxfr.4  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
rabxfr.5  |-  ( y  =  B  ->  A  =  C )
Assertion
Ref Expression
rabxfr  |-  ( B  e.  D  ->  ( C  e.  { x  e.  D  |  ph }  <->  B  e.  { y  e.  D  |  ps }
) )
Distinct variable groups:    x, A    x, y, D    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)    A( y)    B( x, y)    C( x, y)

Proof of Theorem rabxfr
StepHypRef Expression
1 tru 1357 . 2  |- T.
2 rabxfr.1 . . 3  |-  F/_ y B
3 rabxfr.2 . . 3  |-  F/_ y C
4 rabxfr.3 . . . 4  |-  ( y  e.  D  ->  A  e.  D )
54adantl 277 . . 3  |-  ( ( T.  /\  y  e.  D )  ->  A  e.  D )
6 rabxfr.4 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
7 rabxfr.5 . . 3  |-  ( y  =  B  ->  A  =  C )
82, 3, 5, 6, 7rabxfrd 4463 . 2  |-  ( ( T.  /\  B  e.  D )  ->  ( C  e.  { x  e.  D  |  ph }  <->  B  e.  { y  e.  D  |  ps }
) )
91, 8mpan 424 1  |-  ( B  e.  D  ->  ( C  e.  { x  e.  D  |  ph }  <->  B  e.  { y  e.  D  |  ps }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1353   T. wtru 1354    e. wcel 2146   F/_wnfc 2304   {crab 2457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rab 2462  df-v 2737
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator