Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rabxfr | Unicode version |
Description: Class builder membership after substituting an expression (containing ) for in the class expression . (Contributed by NM, 10-Jun-2005.) |
Ref | Expression |
---|---|
rabxfr.1 | |
rabxfr.2 | |
rabxfr.3 | |
rabxfr.4 | |
rabxfr.5 |
Ref | Expression |
---|---|
rabxfr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1347 | . 2 | |
2 | rabxfr.1 | . . 3 | |
3 | rabxfr.2 | . . 3 | |
4 | rabxfr.3 | . . . 4 | |
5 | 4 | adantl 275 | . . 3 |
6 | rabxfr.4 | . . 3 | |
7 | rabxfr.5 | . . 3 | |
8 | 2, 3, 5, 6, 7 | rabxfrd 4447 | . 2 |
9 | 1, 8 | mpan 421 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1343 wtru 1344 wcel 2136 wnfc 2295 crab 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rab 2453 df-v 2728 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |