![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rabxfr | GIF version |
Description: Class builder membership after substituting an expression 𝐴 (containing 𝑦) for 𝑥 in the class expression 𝜑. (Contributed by NM, 10-Jun-2005.) |
Ref | Expression |
---|---|
rabxfr.1 | ⊢ Ⅎ𝑦𝐵 |
rabxfr.2 | ⊢ Ⅎ𝑦𝐶 |
rabxfr.3 | ⊢ (𝑦 ∈ 𝐷 → 𝐴 ∈ 𝐷) |
rabxfr.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
rabxfr.5 | ⊢ (𝑦 = 𝐵 → 𝐴 = 𝐶) |
Ref | Expression |
---|---|
rabxfr | ⊢ (𝐵 ∈ 𝐷 → (𝐶 ∈ {𝑥 ∈ 𝐷 ∣ 𝜑} ↔ 𝐵 ∈ {𝑦 ∈ 𝐷 ∣ 𝜓})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1300 | . 2 ⊢ ⊤ | |
2 | rabxfr.1 | . . 3 ⊢ Ⅎ𝑦𝐵 | |
3 | rabxfr.2 | . . 3 ⊢ Ⅎ𝑦𝐶 | |
4 | rabxfr.3 | . . . 4 ⊢ (𝑦 ∈ 𝐷 → 𝐴 ∈ 𝐷) | |
5 | 4 | adantl 272 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ 𝐷) → 𝐴 ∈ 𝐷) |
6 | rabxfr.4 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
7 | rabxfr.5 | . . 3 ⊢ (𝑦 = 𝐵 → 𝐴 = 𝐶) | |
8 | 2, 3, 5, 6, 7 | rabxfrd 4319 | . 2 ⊢ ((⊤ ∧ 𝐵 ∈ 𝐷) → (𝐶 ∈ {𝑥 ∈ 𝐷 ∣ 𝜑} ↔ 𝐵 ∈ {𝑦 ∈ 𝐷 ∣ 𝜓})) |
9 | 1, 8 | mpan 416 | 1 ⊢ (𝐵 ∈ 𝐷 → (𝐶 ∈ {𝑥 ∈ 𝐷 ∣ 𝜑} ↔ 𝐵 ∈ {𝑦 ∈ 𝐷 ∣ 𝜓})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1296 ⊤wtru 1297 ∈ wcel 1445 Ⅎwnfc 2222 {crab 2374 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-rab 2379 df-v 2635 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |