| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabxfr | GIF version | ||
| Description: Class builder membership after substituting an expression 𝐴 (containing 𝑦) for 𝑥 in the class expression 𝜑. (Contributed by NM, 10-Jun-2005.) |
| Ref | Expression |
|---|---|
| rabxfr.1 | ⊢ Ⅎ𝑦𝐵 |
| rabxfr.2 | ⊢ Ⅎ𝑦𝐶 |
| rabxfr.3 | ⊢ (𝑦 ∈ 𝐷 → 𝐴 ∈ 𝐷) |
| rabxfr.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| rabxfr.5 | ⊢ (𝑦 = 𝐵 → 𝐴 = 𝐶) |
| Ref | Expression |
|---|---|
| rabxfr | ⊢ (𝐵 ∈ 𝐷 → (𝐶 ∈ {𝑥 ∈ 𝐷 ∣ 𝜑} ↔ 𝐵 ∈ {𝑦 ∈ 𝐷 ∣ 𝜓})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1377 | . 2 ⊢ ⊤ | |
| 2 | rabxfr.1 | . . 3 ⊢ Ⅎ𝑦𝐵 | |
| 3 | rabxfr.2 | . . 3 ⊢ Ⅎ𝑦𝐶 | |
| 4 | rabxfr.3 | . . . 4 ⊢ (𝑦 ∈ 𝐷 → 𝐴 ∈ 𝐷) | |
| 5 | 4 | adantl 277 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ 𝐷) → 𝐴 ∈ 𝐷) |
| 6 | rabxfr.4 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 7 | rabxfr.5 | . . 3 ⊢ (𝑦 = 𝐵 → 𝐴 = 𝐶) | |
| 8 | 2, 3, 5, 6, 7 | rabxfrd 4517 | . 2 ⊢ ((⊤ ∧ 𝐵 ∈ 𝐷) → (𝐶 ∈ {𝑥 ∈ 𝐷 ∣ 𝜑} ↔ 𝐵 ∈ {𝑦 ∈ 𝐷 ∣ 𝜓})) |
| 9 | 1, 8 | mpan 424 | 1 ⊢ (𝐵 ∈ 𝐷 → (𝐶 ∈ {𝑥 ∈ 𝐷 ∣ 𝜑} ↔ 𝐵 ∈ {𝑦 ∈ 𝐷 ∣ 𝜓})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ⊤wtru 1374 ∈ wcel 2176 Ⅎwnfc 2335 {crab 2488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rab 2493 df-v 2774 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |