ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabxfr GIF version

Theorem rabxfr 4453
Description: Class builder membership after substituting an expression 𝐴 (containing 𝑦) for 𝑥 in the class expression 𝜑. (Contributed by NM, 10-Jun-2005.)
Hypotheses
Ref Expression
rabxfr.1 𝑦𝐵
rabxfr.2 𝑦𝐶
rabxfr.3 (𝑦𝐷𝐴𝐷)
rabxfr.4 (𝑥 = 𝐴 → (𝜑𝜓))
rabxfr.5 (𝑦 = 𝐵𝐴 = 𝐶)
Assertion
Ref Expression
rabxfr (𝐵𝐷 → (𝐶 ∈ {𝑥𝐷𝜑} ↔ 𝐵 ∈ {𝑦𝐷𝜓}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐷   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝐴(𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem rabxfr
StepHypRef Expression
1 tru 1352 . 2
2 rabxfr.1 . . 3 𝑦𝐵
3 rabxfr.2 . . 3 𝑦𝐶
4 rabxfr.3 . . . 4 (𝑦𝐷𝐴𝐷)
54adantl 275 . . 3 ((⊤ ∧ 𝑦𝐷) → 𝐴𝐷)
6 rabxfr.4 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
7 rabxfr.5 . . 3 (𝑦 = 𝐵𝐴 = 𝐶)
82, 3, 5, 6, 7rabxfrd 4452 . 2 ((⊤ ∧ 𝐵𝐷) → (𝐶 ∈ {𝑥𝐷𝜑} ↔ 𝐵 ∈ {𝑦𝐷𝜓}))
91, 8mpan 422 1 (𝐵𝐷 → (𝐶 ∈ {𝑥𝐷𝜑} ↔ 𝐵 ∈ {𝑦𝐷𝜓}))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1348  wtru 1349  wcel 2141  wnfc 2299  {crab 2452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rab 2457  df-v 2732
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator