ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isprm4 Unicode version

Theorem isprm4 12441
Description: The predicate "is a prime number". A prime number is an integer greater than or equal to 2 whose only divisor greater than or equal to 2 is itself. (Contributed by Paul Chapman, 26-Oct-2012.)
Assertion
Ref Expression
isprm4  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  (
ZZ>= `  2 ) ( z  ||  P  -> 
z  =  P ) ) )
Distinct variable group:    z, P

Proof of Theorem isprm4
StepHypRef Expression
1 isprm2 12439 . 2  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
2 eluz2nn 9687 . . . . . . . 8  |-  ( z  e.  ( ZZ>= `  2
)  ->  z  e.  NN )
32pm4.71ri 392 . . . . . . 7  |-  ( z  e.  ( ZZ>= `  2
)  <->  ( z  e.  NN  /\  z  e.  ( ZZ>= `  2 )
) )
43imbi1i 238 . . . . . 6  |-  ( ( z  e.  ( ZZ>= ` 
2 )  ->  (
z  ||  P  ->  z  =  P ) )  <-> 
( ( z  e.  NN  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( z  ||  P  ->  z  =  P ) ) )
5 impexp 263 . . . . . 6  |-  ( ( ( z  e.  NN  /\  z  e.  ( ZZ>= ` 
2 ) )  -> 
( z  ||  P  ->  z  =  P ) )  <->  ( z  e.  NN  ->  ( z  e.  ( ZZ>= `  2 )  ->  ( z  ||  P  ->  z  =  P ) ) ) )
64, 5bitri 184 . . . . 5  |-  ( ( z  e.  ( ZZ>= ` 
2 )  ->  (
z  ||  P  ->  z  =  P ) )  <-> 
( z  e.  NN  ->  ( z  e.  (
ZZ>= `  2 )  -> 
( z  ||  P  ->  z  =  P ) ) ) )
7 eluz2b3 9725 . . . . . . . 8  |-  ( z  e.  ( ZZ>= `  2
)  <->  ( z  e.  NN  /\  z  =/=  1 ) )
87imbi1i 238 . . . . . . 7  |-  ( ( z  e.  ( ZZ>= ` 
2 )  ->  (
z  ||  P  ->  z  =  P ) )  <-> 
( ( z  e.  NN  /\  z  =/=  1 )  ->  (
z  ||  P  ->  z  =  P ) ) )
9 impexp 263 . . . . . . . 8  |-  ( ( ( z  e.  NN  /\  z  =/=  1 )  ->  ( z  ||  P  ->  z  =  P ) )  <->  ( z  e.  NN  ->  ( z  =/=  1  ->  ( z 
||  P  ->  z  =  P ) ) ) )
10 bi2.04 248 . . . . . . . . . 10  |-  ( ( z  =/=  1  -> 
( z  ||  P  ->  z  =  P ) )  <->  ( z  ||  P  ->  ( z  =/=  1  ->  z  =  P ) ) )
11 df-ne 2377 . . . . . . . . . . . . 13  |-  ( z  =/=  1  <->  -.  z  =  1 )
1211imbi1i 238 . . . . . . . . . . . 12  |-  ( ( z  =/=  1  -> 
z  =  P )  <-> 
( -.  z  =  1  ->  z  =  P ) )
13 nnz 9391 . . . . . . . . . . . . . 14  |-  ( z  e.  NN  ->  z  e.  ZZ )
14 1zzd 9399 . . . . . . . . . . . . . 14  |-  ( z  e.  NN  ->  1  e.  ZZ )
15 zdceq 9448 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ZZ  /\  1  e.  ZZ )  -> DECID  z  =  1 )
1613, 14, 15syl2anc 411 . . . . . . . . . . . . 13  |-  ( z  e.  NN  -> DECID  z  =  1
)
17 dfordc 894 . . . . . . . . . . . . 13  |-  (DECID  z  =  1  ->  ( (
z  =  1  \/  z  =  P )  <-> 
( -.  z  =  1  ->  z  =  P ) ) )
1816, 17syl 14 . . . . . . . . . . . 12  |-  ( z  e.  NN  ->  (
( z  =  1  \/  z  =  P )  <->  ( -.  z  =  1  ->  z  =  P ) ) )
1912, 18bitr4id 199 . . . . . . . . . . 11  |-  ( z  e.  NN  ->  (
( z  =/=  1  ->  z  =  P )  <-> 
( z  =  1  \/  z  =  P ) ) )
2019imbi2d 230 . . . . . . . . . 10  |-  ( z  e.  NN  ->  (
( z  ||  P  ->  ( z  =/=  1  ->  z  =  P ) )  <->  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
2110, 20bitrid 192 . . . . . . . . 9  |-  ( z  e.  NN  ->  (
( z  =/=  1  ->  ( z  ||  P  ->  z  =  P ) )  <->  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
2221imbi2d 230 . . . . . . . 8  |-  ( z  e.  NN  ->  (
( z  e.  NN  ->  ( z  =/=  1  ->  ( z  ||  P  ->  z  =  P ) ) )  <->  ( z  e.  NN  ->  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) ) )
239, 22bitrid 192 . . . . . . 7  |-  ( z  e.  NN  ->  (
( ( z  e.  NN  /\  z  =/=  1 )  ->  (
z  ||  P  ->  z  =  P ) )  <-> 
( z  e.  NN  ->  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) ) )
248, 23bitrid 192 . . . . . 6  |-  ( z  e.  NN  ->  (
( z  e.  (
ZZ>= `  2 )  -> 
( z  ||  P  ->  z  =  P ) )  <->  ( z  e.  NN  ->  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) ) )
2524pm5.74i 180 . . . . 5  |-  ( ( z  e.  NN  ->  ( z  e.  ( ZZ>= ` 
2 )  ->  (
z  ||  P  ->  z  =  P ) ) )  <->  ( z  e.  NN  ->  ( z  e.  NN  ->  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) ) )
26 pm5.4 249 . . . . 5  |-  ( ( z  e.  NN  ->  ( z  e.  NN  ->  ( z  ||  P  -> 
( z  =  1  \/  z  =  P ) ) ) )  <-> 
( z  e.  NN  ->  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
276, 25, 263bitri 206 . . . 4  |-  ( ( z  e.  ( ZZ>= ` 
2 )  ->  (
z  ||  P  ->  z  =  P ) )  <-> 
( z  e.  NN  ->  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
2827ralbii2 2516 . . 3  |-  ( A. z  e.  ( ZZ>= ` 
2 ) ( z 
||  P  ->  z  =  P )  <->  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) )
2928anbi2i 457 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  A. z  e.  ( ZZ>= ` 
2 ) ( z 
||  P  ->  z  =  P ) )  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
301, 29bitr4i 187 1  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  (
ZZ>= `  2 ) ( z  ||  P  -> 
z  =  P ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    = wceq 1373    e. wcel 2176    =/= wne 2376   A.wral 2484   class class class wbr 4044   ` cfv 5271   1c1 7926   NNcn 9036   2c2 9087   ZZcz 9372   ZZ>=cuz 9648    || cdvds 12098   Primecprime 12429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-1o 6502  df-2o 6503  df-er 6620  df-en 6828  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-dvds 12099  df-prm 12430
This theorem is referenced by:  nprm  12445  prmuz2  12453  dvdsprm  12459
  Copyright terms: Public domain W3C validator