ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isprm4 Unicode version

Theorem isprm4 12412
Description: The predicate "is a prime number". A prime number is an integer greater than or equal to 2 whose only divisor greater than or equal to 2 is itself. (Contributed by Paul Chapman, 26-Oct-2012.)
Assertion
Ref Expression
isprm4  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  (
ZZ>= `  2 ) ( z  ||  P  -> 
z  =  P ) ) )
Distinct variable group:    z, P

Proof of Theorem isprm4
StepHypRef Expression
1 isprm2 12410 . 2  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
2 eluz2nn 9686 . . . . . . . 8  |-  ( z  e.  ( ZZ>= `  2
)  ->  z  e.  NN )
32pm4.71ri 392 . . . . . . 7  |-  ( z  e.  ( ZZ>= `  2
)  <->  ( z  e.  NN  /\  z  e.  ( ZZ>= `  2 )
) )
43imbi1i 238 . . . . . 6  |-  ( ( z  e.  ( ZZ>= ` 
2 )  ->  (
z  ||  P  ->  z  =  P ) )  <-> 
( ( z  e.  NN  /\  z  e.  ( ZZ>= `  2 )
)  ->  ( z  ||  P  ->  z  =  P ) ) )
5 impexp 263 . . . . . 6  |-  ( ( ( z  e.  NN  /\  z  e.  ( ZZ>= ` 
2 ) )  -> 
( z  ||  P  ->  z  =  P ) )  <->  ( z  e.  NN  ->  ( z  e.  ( ZZ>= `  2 )  ->  ( z  ||  P  ->  z  =  P ) ) ) )
64, 5bitri 184 . . . . 5  |-  ( ( z  e.  ( ZZ>= ` 
2 )  ->  (
z  ||  P  ->  z  =  P ) )  <-> 
( z  e.  NN  ->  ( z  e.  (
ZZ>= `  2 )  -> 
( z  ||  P  ->  z  =  P ) ) ) )
7 eluz2b3 9724 . . . . . . . 8  |-  ( z  e.  ( ZZ>= `  2
)  <->  ( z  e.  NN  /\  z  =/=  1 ) )
87imbi1i 238 . . . . . . 7  |-  ( ( z  e.  ( ZZ>= ` 
2 )  ->  (
z  ||  P  ->  z  =  P ) )  <-> 
( ( z  e.  NN  /\  z  =/=  1 )  ->  (
z  ||  P  ->  z  =  P ) ) )
9 impexp 263 . . . . . . . 8  |-  ( ( ( z  e.  NN  /\  z  =/=  1 )  ->  ( z  ||  P  ->  z  =  P ) )  <->  ( z  e.  NN  ->  ( z  =/=  1  ->  ( z 
||  P  ->  z  =  P ) ) ) )
10 bi2.04 248 . . . . . . . . . 10  |-  ( ( z  =/=  1  -> 
( z  ||  P  ->  z  =  P ) )  <->  ( z  ||  P  ->  ( z  =/=  1  ->  z  =  P ) ) )
11 df-ne 2376 . . . . . . . . . . . . 13  |-  ( z  =/=  1  <->  -.  z  =  1 )
1211imbi1i 238 . . . . . . . . . . . 12  |-  ( ( z  =/=  1  -> 
z  =  P )  <-> 
( -.  z  =  1  ->  z  =  P ) )
13 nnz 9390 . . . . . . . . . . . . . 14  |-  ( z  e.  NN  ->  z  e.  ZZ )
14 1zzd 9398 . . . . . . . . . . . . . 14  |-  ( z  e.  NN  ->  1  e.  ZZ )
15 zdceq 9447 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ZZ  /\  1  e.  ZZ )  -> DECID  z  =  1 )
1613, 14, 15syl2anc 411 . . . . . . . . . . . . 13  |-  ( z  e.  NN  -> DECID  z  =  1
)
17 dfordc 893 . . . . . . . . . . . . 13  |-  (DECID  z  =  1  ->  ( (
z  =  1  \/  z  =  P )  <-> 
( -.  z  =  1  ->  z  =  P ) ) )
1816, 17syl 14 . . . . . . . . . . . 12  |-  ( z  e.  NN  ->  (
( z  =  1  \/  z  =  P )  <->  ( -.  z  =  1  ->  z  =  P ) ) )
1912, 18bitr4id 199 . . . . . . . . . . 11  |-  ( z  e.  NN  ->  (
( z  =/=  1  ->  z  =  P )  <-> 
( z  =  1  \/  z  =  P ) ) )
2019imbi2d 230 . . . . . . . . . 10  |-  ( z  e.  NN  ->  (
( z  ||  P  ->  ( z  =/=  1  ->  z  =  P ) )  <->  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
2110, 20bitrid 192 . . . . . . . . 9  |-  ( z  e.  NN  ->  (
( z  =/=  1  ->  ( z  ||  P  ->  z  =  P ) )  <->  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
2221imbi2d 230 . . . . . . . 8  |-  ( z  e.  NN  ->  (
( z  e.  NN  ->  ( z  =/=  1  ->  ( z  ||  P  ->  z  =  P ) ) )  <->  ( z  e.  NN  ->  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) ) )
239, 22bitrid 192 . . . . . . 7  |-  ( z  e.  NN  ->  (
( ( z  e.  NN  /\  z  =/=  1 )  ->  (
z  ||  P  ->  z  =  P ) )  <-> 
( z  e.  NN  ->  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) ) )
248, 23bitrid 192 . . . . . 6  |-  ( z  e.  NN  ->  (
( z  e.  (
ZZ>= `  2 )  -> 
( z  ||  P  ->  z  =  P ) )  <->  ( z  e.  NN  ->  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) ) )
2524pm5.74i 180 . . . . 5  |-  ( ( z  e.  NN  ->  ( z  e.  ( ZZ>= ` 
2 )  ->  (
z  ||  P  ->  z  =  P ) ) )  <->  ( z  e.  NN  ->  ( z  e.  NN  ->  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) ) )
26 pm5.4 249 . . . . 5  |-  ( ( z  e.  NN  ->  ( z  e.  NN  ->  ( z  ||  P  -> 
( z  =  1  \/  z  =  P ) ) ) )  <-> 
( z  e.  NN  ->  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
276, 25, 263bitri 206 . . . 4  |-  ( ( z  e.  ( ZZ>= ` 
2 )  ->  (
z  ||  P  ->  z  =  P ) )  <-> 
( z  e.  NN  ->  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
2827ralbii2 2515 . . 3  |-  ( A. z  e.  ( ZZ>= ` 
2 ) ( z 
||  P  ->  z  =  P )  <->  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) )
2928anbi2i 457 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  A. z  e.  ( ZZ>= ` 
2 ) ( z 
||  P  ->  z  =  P ) )  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
301, 29bitr4i 187 1  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  (
ZZ>= `  2 ) ( z  ||  P  -> 
z  =  P ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    = wceq 1372    e. wcel 2175    =/= wne 2375   A.wral 2483   class class class wbr 4043   ` cfv 5270   1c1 7925   NNcn 9035   2c2 9086   ZZcz 9371   ZZ>=cuz 9647    || cdvds 12069   Primecprime 12400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-frec 6476  df-1o 6501  df-2o 6502  df-er 6619  df-en 6827  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-n0 9295  df-z 9372  df-uz 9648  df-q 9740  df-rp 9775  df-seqfrec 10591  df-exp 10682  df-cj 11124  df-re 11125  df-im 11126  df-rsqrt 11280  df-abs 11281  df-dvds 12070  df-prm 12401
This theorem is referenced by:  nprm  12416  prmuz2  12424  dvdsprm  12430
  Copyright terms: Public domain W3C validator