ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrp Unicode version

Theorem ralrp 9153
Description: Quantification over positive reals. (Contributed by NM, 12-Feb-2008.)
Assertion
Ref Expression
ralrp  |-  ( A. x  e.  RR+  ph  <->  A. x  e.  RR  ( 0  < 
x  ->  ph ) )

Proof of Theorem ralrp
StepHypRef Expression
1 elrp 9134 . . . 4  |-  ( x  e.  RR+  <->  ( x  e.  RR  /\  0  < 
x ) )
21imbi1i 236 . . 3  |-  ( ( x  e.  RR+  ->  ph )  <->  ( ( x  e.  RR  /\  0  <  x )  ->  ph )
)
3 impexp 259 . . 3  |-  ( ( ( x  e.  RR  /\  0  <  x )  ->  ph )  <->  ( x  e.  RR  ->  ( 0  <  x  ->  ph )
) )
42, 3bitri 182 . 2  |-  ( ( x  e.  RR+  ->  ph )  <->  ( x  e.  RR  ->  ( 0  <  x  ->  ph )
) )
54ralbii2 2388 1  |-  ( A. x  e.  RR+  ph  <->  A. x  e.  RR  ( 0  < 
x  ->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    e. wcel 1438   A.wral 2359   class class class wbr 3845   RRcr 7347   0cc0 7348    < clt 7520   RR+crp 9132
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rab 2368  df-v 2621  df-un 3003  df-sn 3452  df-pr 3453  df-op 3455  df-br 3846  df-rp 9133
This theorem is referenced by:  caucvgre  10410
  Copyright terms: Public domain W3C validator