ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrp Unicode version

Theorem ralrp 9750
Description: Quantification over positive reals. (Contributed by NM, 12-Feb-2008.)
Assertion
Ref Expression
ralrp  |-  ( A. x  e.  RR+  ph  <->  A. x  e.  RR  ( 0  < 
x  ->  ph ) )

Proof of Theorem ralrp
StepHypRef Expression
1 elrp 9730 . . . 4  |-  ( x  e.  RR+  <->  ( x  e.  RR  /\  0  < 
x ) )
21imbi1i 238 . . 3  |-  ( ( x  e.  RR+  ->  ph )  <->  ( ( x  e.  RR  /\  0  <  x )  ->  ph )
)
3 impexp 263 . . 3  |-  ( ( ( x  e.  RR  /\  0  <  x )  ->  ph )  <->  ( x  e.  RR  ->  ( 0  <  x  ->  ph )
) )
42, 3bitri 184 . 2  |-  ( ( x  e.  RR+  ->  ph )  <->  ( x  e.  RR  ->  ( 0  <  x  ->  ph )
) )
54ralbii2 2507 1  |-  ( A. x  e.  RR+  ph  <->  A. x  e.  RR  ( 0  < 
x  ->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2167   A.wral 2475   class class class wbr 4033   RRcr 7878   0cc0 7879    < clt 8061   RR+crp 9728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rab 2484  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-rp 9729
This theorem is referenced by:  caucvgre  11146
  Copyright terms: Public domain W3C validator