ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrp Unicode version

Theorem ralrp 9705
Description: Quantification over positive reals. (Contributed by NM, 12-Feb-2008.)
Assertion
Ref Expression
ralrp  |-  ( A. x  e.  RR+  ph  <->  A. x  e.  RR  ( 0  < 
x  ->  ph ) )

Proof of Theorem ralrp
StepHypRef Expression
1 elrp 9685 . . . 4  |-  ( x  e.  RR+  <->  ( x  e.  RR  /\  0  < 
x ) )
21imbi1i 238 . . 3  |-  ( ( x  e.  RR+  ->  ph )  <->  ( ( x  e.  RR  /\  0  <  x )  ->  ph )
)
3 impexp 263 . . 3  |-  ( ( ( x  e.  RR  /\  0  <  x )  ->  ph )  <->  ( x  e.  RR  ->  ( 0  <  x  ->  ph )
) )
42, 3bitri 184 . 2  |-  ( ( x  e.  RR+  ->  ph )  <->  ( x  e.  RR  ->  ( 0  <  x  ->  ph )
) )
54ralbii2 2500 1  |-  ( A. x  e.  RR+  ph  <->  A. x  e.  RR  ( 0  < 
x  ->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2160   A.wral 2468   class class class wbr 4018   RRcr 7840   0cc0 7841    < clt 8022   RR+crp 9683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rab 2477  df-v 2754  df-un 3148  df-sn 3613  df-pr 3614  df-op 3616  df-br 4019  df-rp 9684
This theorem is referenced by:  caucvgre  11022
  Copyright terms: Public domain W3C validator