Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > raluz2 | Unicode version |
Description: Restricted universal quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.) |
Ref | Expression |
---|---|
raluz2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2 9450 | . . . . . 6 | |
2 | 3anass 967 | . . . . . 6 | |
3 | 1, 2 | bitri 183 | . . . . 5 |
4 | 3 | imbi1i 237 | . . . 4 |
5 | impexp 261 | . . . . . 6 | |
6 | impexp 261 | . . . . . . 7 | |
7 | 6 | imbi2i 225 | . . . . . 6 |
8 | 5, 7 | bitri 183 | . . . . 5 |
9 | bi2.04 247 | . . . . 5 | |
10 | 8, 9 | bitri 183 | . . . 4 |
11 | 4, 10 | bitri 183 | . . 3 |
12 | 11 | ralbii2 2467 | . 2 |
13 | r19.21v 2534 | . 2 | |
14 | 12, 13 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 963 wcel 2128 wral 2435 class class class wbr 3967 cfv 5172 cle 7915 cz 9172 cuz 9444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4084 ax-pow 4137 ax-pr 4171 ax-cnex 7825 ax-resscn 7826 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-sbc 2938 df-un 3106 df-in 3108 df-ss 3115 df-pw 3546 df-sn 3567 df-pr 3568 df-op 3570 df-uni 3775 df-br 3968 df-opab 4028 df-mpt 4029 df-id 4255 df-xp 4594 df-rel 4595 df-cnv 4596 df-co 4597 df-dm 4598 df-rn 4599 df-res 4600 df-ima 4601 df-iota 5137 df-fun 5174 df-fn 5175 df-f 5176 df-fv 5180 df-ov 5829 df-neg 8053 df-z 9173 df-uz 9445 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |