ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  raluz2 Unicode version

Theorem raluz2 9538
Description: Restricted universal quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.)
Assertion
Ref Expression
raluz2  |-  ( A. n  e.  ( ZZ>= `  M ) ph  <->  ( M  e.  ZZ  ->  A. n  e.  ZZ  ( M  <_  n  ->  ph ) ) )
Distinct variable group:    n, M
Allowed substitution hint:    ph( n)

Proof of Theorem raluz2
StepHypRef Expression
1 eluz2 9493 . . . . . 6  |-  ( n  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  n  e.  ZZ  /\  M  <_  n ) )
2 3anass 977 . . . . . 6  |-  ( ( M  e.  ZZ  /\  n  e.  ZZ  /\  M  <_  n )  <->  ( M  e.  ZZ  /\  ( n  e.  ZZ  /\  M  <_  n ) ) )
31, 2bitri 183 . . . . 5  |-  ( n  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  ( n  e.  ZZ  /\  M  <_  n ) ) )
43imbi1i 237 . . . 4  |-  ( ( n  e.  ( ZZ>= `  M )  ->  ph )  <->  ( ( M  e.  ZZ  /\  ( n  e.  ZZ  /\  M  <_  n )
)  ->  ph ) )
5 impexp 261 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  ( n  e.  ZZ  /\  M  <_  n )
)  ->  ph )  <->  ( M  e.  ZZ  ->  ( (
n  e.  ZZ  /\  M  <_  n )  ->  ph ) ) )
6 impexp 261 . . . . . . 7  |-  ( ( ( n  e.  ZZ  /\  M  <_  n )  ->  ph )  <->  ( n  e.  ZZ  ->  ( M  <_  n  ->  ph ) ) )
76imbi2i 225 . . . . . 6  |-  ( ( M  e.  ZZ  ->  ( ( n  e.  ZZ  /\  M  <_  n )  ->  ph ) )  <->  ( M  e.  ZZ  ->  ( n  e.  ZZ  ->  ( M  <_  n  ->  ph ) ) ) )
85, 7bitri 183 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  ( n  e.  ZZ  /\  M  <_  n )
)  ->  ph )  <->  ( M  e.  ZZ  ->  ( n  e.  ZZ  ->  ( M  <_  n  ->  ph ) ) ) )
9 bi2.04 247 . . . . 5  |-  ( ( M  e.  ZZ  ->  ( n  e.  ZZ  ->  ( M  <_  n  ->  ph ) ) )  <->  ( n  e.  ZZ  ->  ( M  e.  ZZ  ->  ( M  <_  n  ->  ph ) ) ) )
108, 9bitri 183 . . . 4  |-  ( ( ( M  e.  ZZ  /\  ( n  e.  ZZ  /\  M  <_  n )
)  ->  ph )  <->  ( n  e.  ZZ  ->  ( M  e.  ZZ  ->  ( M  <_  n  ->  ph ) ) ) )
114, 10bitri 183 . . 3  |-  ( ( n  e.  ( ZZ>= `  M )  ->  ph )  <->  ( n  e.  ZZ  ->  ( M  e.  ZZ  ->  ( M  <_  n  ->  ph ) ) ) )
1211ralbii2 2480 . 2  |-  ( A. n  e.  ( ZZ>= `  M ) ph  <->  A. n  e.  ZZ  ( M  e.  ZZ  ->  ( M  <_  n  ->  ph ) ) )
13 r19.21v 2547 . 2  |-  ( A. n  e.  ZZ  ( M  e.  ZZ  ->  ( M  <_  n  ->  ph ) )  <->  ( M  e.  ZZ  ->  A. n  e.  ZZ  ( M  <_  n  ->  ph ) ) )
1412, 13bitri 183 1  |-  ( A. n  e.  ( ZZ>= `  M ) ph  <->  ( M  e.  ZZ  ->  A. n  e.  ZZ  ( M  <_  n  ->  ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    e. wcel 2141   A.wral 2448   class class class wbr 3989   ` cfv 5198    <_ cle 7955   ZZcz 9212   ZZ>=cuz 9487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-cnex 7865  ax-resscn 7866
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ov 5856  df-neg 8093  df-z 9213  df-uz 9488
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator