ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  raluz2 Unicode version

Theorem raluz2 9653
Description: Restricted universal quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.)
Assertion
Ref Expression
raluz2  |-  ( A. n  e.  ( ZZ>= `  M ) ph  <->  ( M  e.  ZZ  ->  A. n  e.  ZZ  ( M  <_  n  ->  ph ) ) )
Distinct variable group:    n, M
Allowed substitution hint:    ph( n)

Proof of Theorem raluz2
StepHypRef Expression
1 eluz2 9607 . . . . . 6  |-  ( n  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  n  e.  ZZ  /\  M  <_  n ) )
2 3anass 984 . . . . . 6  |-  ( ( M  e.  ZZ  /\  n  e.  ZZ  /\  M  <_  n )  <->  ( M  e.  ZZ  /\  ( n  e.  ZZ  /\  M  <_  n ) ) )
31, 2bitri 184 . . . . 5  |-  ( n  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  ( n  e.  ZZ  /\  M  <_  n ) ) )
43imbi1i 238 . . . 4  |-  ( ( n  e.  ( ZZ>= `  M )  ->  ph )  <->  ( ( M  e.  ZZ  /\  ( n  e.  ZZ  /\  M  <_  n )
)  ->  ph ) )
5 impexp 263 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  ( n  e.  ZZ  /\  M  <_  n )
)  ->  ph )  <->  ( M  e.  ZZ  ->  ( (
n  e.  ZZ  /\  M  <_  n )  ->  ph ) ) )
6 impexp 263 . . . . . . 7  |-  ( ( ( n  e.  ZZ  /\  M  <_  n )  ->  ph )  <->  ( n  e.  ZZ  ->  ( M  <_  n  ->  ph ) ) )
76imbi2i 226 . . . . . 6  |-  ( ( M  e.  ZZ  ->  ( ( n  e.  ZZ  /\  M  <_  n )  ->  ph ) )  <->  ( M  e.  ZZ  ->  ( n  e.  ZZ  ->  ( M  <_  n  ->  ph ) ) ) )
85, 7bitri 184 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  ( n  e.  ZZ  /\  M  <_  n )
)  ->  ph )  <->  ( M  e.  ZZ  ->  ( n  e.  ZZ  ->  ( M  <_  n  ->  ph ) ) ) )
9 bi2.04 248 . . . . 5  |-  ( ( M  e.  ZZ  ->  ( n  e.  ZZ  ->  ( M  <_  n  ->  ph ) ) )  <->  ( n  e.  ZZ  ->  ( M  e.  ZZ  ->  ( M  <_  n  ->  ph ) ) ) )
108, 9bitri 184 . . . 4  |-  ( ( ( M  e.  ZZ  /\  ( n  e.  ZZ  /\  M  <_  n )
)  ->  ph )  <->  ( n  e.  ZZ  ->  ( M  e.  ZZ  ->  ( M  <_  n  ->  ph ) ) ) )
114, 10bitri 184 . . 3  |-  ( ( n  e.  ( ZZ>= `  M )  ->  ph )  <->  ( n  e.  ZZ  ->  ( M  e.  ZZ  ->  ( M  <_  n  ->  ph ) ) ) )
1211ralbii2 2507 . 2  |-  ( A. n  e.  ( ZZ>= `  M ) ph  <->  A. n  e.  ZZ  ( M  e.  ZZ  ->  ( M  <_  n  ->  ph ) ) )
13 r19.21v 2574 . 2  |-  ( A. n  e.  ZZ  ( M  e.  ZZ  ->  ( M  <_  n  ->  ph ) )  <->  ( M  e.  ZZ  ->  A. n  e.  ZZ  ( M  <_  n  ->  ph ) ) )
1412, 13bitri 184 1  |-  ( A. n  e.  ( ZZ>= `  M ) ph  <->  ( M  e.  ZZ  ->  A. n  e.  ZZ  ( M  <_  n  ->  ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    e. wcel 2167   A.wral 2475   class class class wbr 4033   ` cfv 5258    <_ cle 8062   ZZcz 9326   ZZ>=cuz 9601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-cnex 7970  ax-resscn 7971
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-ov 5925  df-neg 8200  df-z 9327  df-uz 9602
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator