ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrab Unicode version

Theorem ralrab 2846
Description: Universal quantification over a restricted class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypothesis
Ref Expression
ralab.1  |-  ( y  =  x  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ralrab  |-  ( A. x  e.  { y  e.  A  |  ph } ch 
<-> 
A. x  e.  A  ( ps  ->  ch )
)
Distinct variable groups:    x, y    y, A    ps, y
Allowed substitution hints:    ph( x, y)    ps( x)    ch( x, y)    A( x)

Proof of Theorem ralrab
StepHypRef Expression
1 ralab.1 . . . . 5  |-  ( y  =  x  ->  ( ph 
<->  ps ) )
21elrab 2841 . . . 4  |-  ( x  e.  { y  e.  A  |  ph }  <->  ( x  e.  A  /\  ps ) )
32imbi1i 237 . . 3  |-  ( ( x  e.  { y  e.  A  |  ph }  ->  ch )  <->  ( (
x  e.  A  /\  ps )  ->  ch )
)
4 impexp 261 . . 3  |-  ( ( ( x  e.  A  /\  ps )  ->  ch ) 
<->  ( x  e.  A  ->  ( ps  ->  ch ) ) )
53, 4bitri 183 . 2  |-  ( ( x  e.  { y  e.  A  |  ph }  ->  ch )  <->  ( x  e.  A  ->  ( ps 
->  ch ) ) )
65ralbii2 2446 1  |-  ( A. x  e.  { y  e.  A  |  ph } ch 
<-> 
A. x  e.  A  ( ps  ->  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 1481   A.wral 2417   {crab 2421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rab 2426  df-v 2689
This theorem is referenced by:  limcdifap  12830
  Copyright terms: Public domain W3C validator