ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrab Unicode version

Theorem ralrab 2944
Description: Universal quantification over a restricted class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypothesis
Ref Expression
ralab.1  |-  ( y  =  x  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ralrab  |-  ( A. x  e.  { y  e.  A  |  ph } ch 
<-> 
A. x  e.  A  ( ps  ->  ch )
)
Distinct variable groups:    x, y    y, A    ps, y
Allowed substitution hints:    ph( x, y)    ps( x)    ch( x, y)    A( x)

Proof of Theorem ralrab
StepHypRef Expression
1 ralab.1 . . . . 5  |-  ( y  =  x  ->  ( ph 
<->  ps ) )
21elrab 2939 . . . 4  |-  ( x  e.  { y  e.  A  |  ph }  <->  ( x  e.  A  /\  ps ) )
32imbi1i 238 . . 3  |-  ( ( x  e.  { y  e.  A  |  ph }  ->  ch )  <->  ( (
x  e.  A  /\  ps )  ->  ch )
)
4 impexp 263 . . 3  |-  ( ( ( x  e.  A  /\  ps )  ->  ch ) 
<->  ( x  e.  A  ->  ( ps  ->  ch ) ) )
53, 4bitri 184 . 2  |-  ( ( x  e.  { y  e.  A  |  ph }  ->  ch )  <->  ( x  e.  A  ->  ( ps 
->  ch ) ) )
65ralbii2 2520 1  |-  ( A. x  e.  { y  e.  A  |  ph } ch 
<-> 
A. x  e.  A  ( ps  ->  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2180   A.wral 2488   {crab 2492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rab 2497  df-v 2781
This theorem is referenced by:  mhmeql  13491  ghmeql  13770  limcdifap  15301
  Copyright terms: Public domain W3C validator