ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  raleqtrdv Unicode version

Theorem raleqtrdv 2701
Description: Substitution of equal classes into a restricted universal quantifier. (Contributed by Matthew House, 21-Jul-2025.)
Hypotheses
Ref Expression
raleqtrdv.1  |-  ( ph  ->  A. x  e.  A  ps )
raleqtrdv.2  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
raleqtrdv  |-  ( ph  ->  A. x  e.  B  ps )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem raleqtrdv
StepHypRef Expression
1 raleqtrdv.1 . 2  |-  ( ph  ->  A. x  e.  A  ps )
2 raleqtrdv.2 . . 3  |-  ( ph  ->  A  =  B )
32raleqdv 2699 . 2  |-  ( ph  ->  ( A. x  e.  A  ps  <->  A. x  e.  B  ps )
)
41, 3mpbid 147 1  |-  ( ph  ->  A. x  e.  B  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   A.wral 2475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480
This theorem is referenced by:  znf1o  14207
  Copyright terms: Public domain W3C validator