![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > raleqtrdv | GIF version |
Description: Substitution of equal classes into a restricted universal quantifier. (Contributed by Matthew House, 21-Jul-2025.) |
Ref | Expression |
---|---|
raleqtrdv.1 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
raleqtrdv.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
raleqtrdv | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqtrdv.1 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | |
2 | raleqtrdv.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | raleqdv 2696 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
4 | 1, 3 | mpbid 147 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∀wral 2472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 |
This theorem is referenced by: znf1o 14139 |
Copyright terms: Public domain | W3C validator |