ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  raleqtrdv GIF version

Theorem raleqtrdv 2711
Description: Substitution of equal classes into a restricted universal quantifier. (Contributed by Matthew House, 21-Jul-2025.)
Hypotheses
Ref Expression
raleqtrdv.1 (𝜑 → ∀𝑥𝐴 𝜓)
raleqtrdv.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
raleqtrdv (𝜑 → ∀𝑥𝐵 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem raleqtrdv
StepHypRef Expression
1 raleqtrdv.1 . 2 (𝜑 → ∀𝑥𝐴 𝜓)
2 raleqtrdv.2 . . 3 (𝜑𝐴 = 𝐵)
32raleqdv 2709 . 2 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜓))
41, 3mpbid 147 1 (𝜑 → ∀𝑥𝐵 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wral 2485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490
This theorem is referenced by:  znf1o  14457
  Copyright terms: Public domain W3C validator