ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znf1o Unicode version

Theorem znf1o 14580
Description: The function  F enumerates all equivalence classes in ℤ/nℤ for each  n. When  n  = 
0,  ZZ  /  0 ZZ  =  ZZ  /  {
0 }  ~~  ZZ so we let  W  =  ZZ; otherwise  W  =  { 0 , 
... ,  n  - 
1 } enumerates all the equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by Mario Carneiro, 2-May-2016.) (Revised by AV, 13-Jun-2019.)
Hypotheses
Ref Expression
znf1o.y  |-  Y  =  (ℤ/n `  N )
znf1o.b  |-  B  =  ( Base `  Y
)
znf1o.f  |-  F  =  ( ( ZRHom `  Y )  |`  W )
znf1o.w  |-  W  =  if ( N  =  0 ,  ZZ , 
( 0..^ N ) )
Assertion
Ref Expression
znf1o  |-  ( N  e.  NN0  ->  F : W
-1-1-onto-> B )

Proof of Theorem znf1o
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 znf1o.y . . . . . . 7  |-  Y  =  (ℤ/n `  N )
21zncrng 14574 . . . . . 6  |-  ( N  e.  NN0  ->  Y  e. 
CRing )
3 crngring 13937 . . . . . 6  |-  ( Y  e.  CRing  ->  Y  e.  Ring )
4 eqid 2209 . . . . . . 7  |-  ( ZRHom `  Y )  =  ( ZRHom `  Y )
54zrhrhm 14552 . . . . . 6  |-  ( Y  e.  Ring  ->  ( ZRHom `  Y )  e.  (ring RingHom  Y
) )
6 zringbas 14525 . . . . . . 7  |-  ZZ  =  ( Base ` ring )
7 znf1o.b . . . . . . 7  |-  B  =  ( Base `  Y
)
86, 7rhmf 14092 . . . . . 6  |-  ( ( ZRHom `  Y )  e.  (ring RingHom  Y )  ->  ( ZRHom `  Y ) : ZZ --> B )
92, 3, 5, 84syl 18 . . . . 5  |-  ( N  e.  NN0  ->  ( ZRHom `  Y ) : ZZ --> B )
10 znf1o.w . . . . . . . 8  |-  W  =  if ( N  =  0 ,  ZZ , 
( 0..^ N ) )
11 simpr 110 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  N  =  0 )  ->  N  =  0 )
1211iftrued 3589 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  N  =  0 )  ->  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )  =  ZZ )
1310, 12eqtrid 2254 . . . . . . 7  |-  ( ( N  e.  NN0  /\  N  =  0 )  ->  W  =  ZZ )
14 ssid 3224 . . . . . . 7  |-  ZZ  C_  ZZ
1513, 14eqsstrdi 3256 . . . . . 6  |-  ( ( N  e.  NN0  /\  N  =  0 )  ->  W  C_  ZZ )
16 simpr 110 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  -.  N  =  0
)  ->  -.  N  =  0 )
1716iffalsed 3592 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  -.  N  =  0
)  ->  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )  =  ( 0..^ N ) )
1810, 17eqtrid 2254 . . . . . . 7  |-  ( ( N  e.  NN0  /\  -.  N  =  0
)  ->  W  =  ( 0..^ N ) )
19 elfzoelz 10311 . . . . . . . 8  |-  ( x  e.  ( 0..^ N )  ->  x  e.  ZZ )
2019ssriv 3208 . . . . . . 7  |-  ( 0..^ N )  C_  ZZ
2118, 20eqsstrdi 3256 . . . . . 6  |-  ( ( N  e.  NN0  /\  -.  N  =  0
)  ->  W  C_  ZZ )
22 nn0z 9434 . . . . . . . 8  |-  ( N  e.  NN0  ->  N  e.  ZZ )
23 0z 9425 . . . . . . . 8  |-  0  e.  ZZ
24 zdceq 9490 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
2522, 23, 24sylancl 413 . . . . . . 7  |-  ( N  e.  NN0  -> DECID  N  =  0
)
26 exmiddc 840 . . . . . . 7  |-  (DECID  N  =  0  ->  ( N  =  0  \/  -.  N  =  0 ) )
2725, 26syl 14 . . . . . 6  |-  ( N  e.  NN0  ->  ( N  =  0  \/  -.  N  =  0 ) )
2815, 21, 27mpjaodan 802 . . . . 5  |-  ( N  e.  NN0  ->  W  C_  ZZ )
299, 28fssresd 5478 . . . 4  |-  ( N  e.  NN0  ->  ( ( ZRHom `  Y )  |`  W ) : W --> B )
30 znf1o.f . . . . 5  |-  F  =  ( ( ZRHom `  Y )  |`  W )
3130feq1i 5442 . . . 4  |-  ( F : W --> B  <->  ( ( ZRHom `  Y )  |`  W ) : W --> B )
3229, 31sylibr 134 . . 3  |-  ( N  e.  NN0  ->  F : W
--> B )
3330fveq1i 5604 . . . . . . . 8  |-  ( F `
 x )  =  ( ( ( ZRHom `  Y )  |`  W ) `
 x )
34 fvres 5627 . . . . . . . . 9  |-  ( x  e.  W  ->  (
( ( ZRHom `  Y )  |`  W ) `
 x )  =  ( ( ZRHom `  Y ) `  x
) )
3534ad2antrl 490 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
( ( ZRHom `  Y )  |`  W ) `
 x )  =  ( ( ZRHom `  Y ) `  x
) )
3633, 35eqtrid 2254 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  ( F `  x )  =  ( ( ZRHom `  Y ) `  x
) )
3730fveq1i 5604 . . . . . . . 8  |-  ( F `
 y )  =  ( ( ( ZRHom `  Y )  |`  W ) `
 y )
38 fvres 5627 . . . . . . . . 9  |-  ( y  e.  W  ->  (
( ( ZRHom `  Y )  |`  W ) `
 y )  =  ( ( ZRHom `  Y ) `  y
) )
3938ad2antll 491 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
( ( ZRHom `  Y )  |`  W ) `
 y )  =  ( ( ZRHom `  Y ) `  y
) )
4037, 39eqtrid 2254 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  ( F `  y )  =  ( ( ZRHom `  Y ) `  y
) )
4136, 40eqeq12d 2224 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
( F `  x
)  =  ( F `
 y )  <->  ( ( ZRHom `  Y ) `  x )  =  ( ( ZRHom `  Y
) `  y )
) )
42 simpl 109 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  N  e.  NN0 )
4328adantr 276 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  W  C_  ZZ )
44 simprl 529 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  x  e.  W )
4543, 44sseldd 3205 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  x  e.  ZZ )
46 simprr 531 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  y  e.  W )
4743, 46sseldd 3205 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  y  e.  ZZ )
481, 4zndvds 14578 . . . . . . 7  |-  ( ( N  e.  NN0  /\  x  e.  ZZ  /\  y  e.  ZZ )  ->  (
( ( ZRHom `  Y ) `  x
)  =  ( ( ZRHom `  Y ) `  y )  <->  N  ||  (
x  -  y ) ) )
4942, 45, 47, 48syl3anc 1252 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
( ( ZRHom `  Y ) `  x
)  =  ( ( ZRHom `  Y ) `  y )  <->  N  ||  (
x  -  y ) ) )
50 elnn0 9339 . . . . . . 7  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
51 simpl 109 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  N  e.  NN )
5251nnnn0d 9390 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  N  e.  NN0 )
5352, 28syl 14 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  W  C_  ZZ )
54 simprl 529 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  x  e.  W )
5553, 54sseldd 3205 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  x  e.  ZZ )
56 simprr 531 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  y  e.  W )
5753, 56sseldd 3205 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  y  e.  ZZ )
58 moddvds 12276 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  x  e.  ZZ  /\  y  e.  ZZ )  ->  (
( x  mod  N
)  =  ( y  mod  N )  <->  N  ||  (
x  -  y ) ) )
5951, 55, 57, 58syl3anc 1252 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
( x  mod  N
)  =  ( y  mod  N )  <->  N  ||  (
x  -  y ) ) )
60 zq 9789 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  x  e.  QQ )
6155, 60syl 14 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  x  e.  QQ )
62 nnq 9796 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  N  e.  QQ )
6362adantr 276 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  N  e.  QQ )
64 nnne0 9106 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  N  =/=  0 )
65 ifnefalse 3593 . . . . . . . . . . . . . . . 16  |-  ( N  =/=  0  ->  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )  =  ( 0..^ N ) )
6664, 65syl 14 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )  =  ( 0..^ N ) )
6710, 66eqtrid 2254 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  W  =  ( 0..^ N ) )
6867adantr 276 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  W  =  ( 0..^ N ) )
6954, 68eleqtrd 2288 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  x  e.  ( 0..^ N ) )
70 elfzole1 10320 . . . . . . . . . . . 12  |-  ( x  e.  ( 0..^ N )  ->  0  <_  x )
7169, 70syl 14 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  0  <_  x )
72 elfzolt2 10321 . . . . . . . . . . . 12  |-  ( x  e.  ( 0..^ N )  ->  x  <  N )
7369, 72syl 14 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  x  <  N )
74 modqid 10538 . . . . . . . . . . 11  |-  ( ( ( x  e.  QQ  /\  N  e.  QQ )  /\  ( 0  <_  x  /\  x  <  N
) )  ->  (
x  mod  N )  =  x )
7561, 63, 71, 73, 74syl22anc 1253 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
x  mod  N )  =  x )
76 zq 9789 . . . . . . . . . . . 12  |-  ( y  e.  ZZ  ->  y  e.  QQ )
7757, 76syl 14 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  y  e.  QQ )
7856, 68eleqtrd 2288 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  y  e.  ( 0..^ N ) )
79 elfzole1 10320 . . . . . . . . . . . 12  |-  ( y  e.  ( 0..^ N )  ->  0  <_  y )
8078, 79syl 14 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  0  <_  y )
81 elfzolt2 10321 . . . . . . . . . . . 12  |-  ( y  e.  ( 0..^ N )  ->  y  <  N )
8278, 81syl 14 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  y  <  N )
83 modqid 10538 . . . . . . . . . . 11  |-  ( ( ( y  e.  QQ  /\  N  e.  QQ )  /\  ( 0  <_ 
y  /\  y  <  N ) )  ->  (
y  mod  N )  =  y )
8477, 63, 80, 82, 83syl22anc 1253 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
y  mod  N )  =  y )
8575, 84eqeq12d 2224 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
( x  mod  N
)  =  ( y  mod  N )  <->  x  =  y ) )
8659, 85bitr3d 190 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  ( N  ||  ( x  -  y )  <->  x  =  y ) )
87 simpl 109 . . . . . . . . . 10  |-  ( ( N  =  0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  N  =  0 )
8887breq1d 4072 . . . . . . . . 9  |-  ( ( N  =  0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  ( N  ||  ( x  -  y )  <->  0  ||  ( x  -  y
) ) )
89 id 19 . . . . . . . . . . . . 13  |-  ( N  =  0  ->  N  =  0 )
90 0nn0 9352 . . . . . . . . . . . . 13  |-  0  e.  NN0
9189, 90eqeltrdi 2300 . . . . . . . . . . . 12  |-  ( N  =  0  ->  N  e.  NN0 )
9291, 45sylan 283 . . . . . . . . . . 11  |-  ( ( N  =  0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  x  e.  ZZ )
9391, 47sylan 283 . . . . . . . . . . 11  |-  ( ( N  =  0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  y  e.  ZZ )
9492, 93zsubcld 9542 . . . . . . . . . 10  |-  ( ( N  =  0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
x  -  y )  e.  ZZ )
95 0dvds 12288 . . . . . . . . . 10  |-  ( ( x  -  y )  e.  ZZ  ->  (
0  ||  ( x  -  y )  <->  ( x  -  y )  =  0 ) )
9694, 95syl 14 . . . . . . . . 9  |-  ( ( N  =  0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
0  ||  ( x  -  y )  <->  ( x  -  y )  =  0 ) )
9792zcnd 9538 . . . . . . . . . 10  |-  ( ( N  =  0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  x  e.  CC )
9893zcnd 9538 . . . . . . . . . 10  |-  ( ( N  =  0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  y  e.  CC )
9997, 98subeq0ad 8435 . . . . . . . . 9  |-  ( ( N  =  0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
( x  -  y
)  =  0  <->  x  =  y ) )
10088, 96, 993bitrd 214 . . . . . . . 8  |-  ( ( N  =  0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  ( N  ||  ( x  -  y )  <->  x  =  y ) )
10186, 100jaoian 799 . . . . . . 7  |-  ( ( ( N  e.  NN  \/  N  =  0
)  /\  ( x  e.  W  /\  y  e.  W ) )  -> 
( N  ||  (
x  -  y )  <-> 
x  =  y ) )
10250, 101sylanb 284 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  ( N  ||  ( x  -  y )  <->  x  =  y ) )
10341, 49, 1023bitrd 214 . . . . 5  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
( F `  x
)  =  ( F `
 y )  <->  x  =  y ) )
104103biimpd 144 . . . 4  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
)
105104ralrimivva 2592 . . 3  |-  ( N  e.  NN0  ->  A. x  e.  W  A. y  e.  W  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) )
106 dff13 5865 . . 3  |-  ( F : W -1-1-> B  <->  ( F : W --> B  /\  A. x  e.  W  A. y  e.  W  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
10732, 105, 106sylanbrc 417 . 2  |-  ( N  e.  NN0  ->  F : W -1-1-> B )
108 zmodfzo 10536 . . . . . . . . . . . 12  |-  ( ( z  e.  ZZ  /\  N  e.  NN )  ->  ( z  mod  N
)  e.  ( 0..^ N ) )
109108ancoms 268 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  ( z  mod  N
)  e.  ( 0..^ N ) )
11067adantr 276 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  W  =  ( 0..^ N ) )
111109, 110eleqtrrd 2289 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  ( z  mod  N
)  e.  W )
112 zq 9789 . . . . . . . . . . . . . . 15  |-  ( z  e.  ZZ  ->  z  e.  QQ )
113112adantl 277 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  z  e.  QQ )
11462adantr 276 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  N  e.  QQ )
115 nngt0 9103 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  0  <  N )
116115adantr 276 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  0  <  N )
117 modqabs2 10547 . . . . . . . . . . . . . 14  |-  ( ( z  e.  QQ  /\  N  e.  QQ  /\  0  <  N )  ->  (
( z  mod  N
)  mod  N )  =  ( z  mod 
N ) )
118113, 114, 116, 117syl3anc 1252 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  ( ( z  mod 
N )  mod  N
)  =  ( z  mod  N ) )
119 simpl 109 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  N  e.  NN )
12020, 109sselid 3202 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  ( z  mod  N
)  e.  ZZ )
121 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  z  e.  ZZ )
122 moddvds 12276 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( z  mod  N
)  e.  ZZ  /\  z  e.  ZZ )  ->  ( ( ( z  mod  N )  mod 
N )  =  ( z  mod  N )  <-> 
N  ||  ( (
z  mod  N )  -  z ) ) )
123119, 120, 121, 122syl3anc 1252 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  ( ( ( z  mod  N )  mod 
N )  =  ( z  mod  N )  <-> 
N  ||  ( (
z  mod  N )  -  z ) ) )
124118, 123mpbid 147 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  N  ||  ( ( z  mod  N )  -  z ) )
125 nnnn0 9344 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  N  e.  NN0 )
126125adantr 276 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  N  e.  NN0 )
1271, 4zndvds 14578 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  ( z  mod  N
)  e.  ZZ  /\  z  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  (
z  mod  N )
)  =  ( ( ZRHom `  Y ) `  z )  <->  N  ||  (
( z  mod  N
)  -  z ) ) )
128126, 120, 121, 127syl3anc 1252 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  (
z  mod  N )
)  =  ( ( ZRHom `  Y ) `  z )  <->  N  ||  (
( z  mod  N
)  -  z ) ) )
129124, 128mpbird 167 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  ( ( ZRHom `  Y ) `  (
z  mod  N )
)  =  ( ( ZRHom `  Y ) `  z ) )
130129eqcomd 2215 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  ( ( ZRHom `  Y ) `  z
)  =  ( ( ZRHom `  Y ) `  ( z  mod  N
) ) )
131 fveq2 5603 . . . . . . . . . . 11  |-  ( y  =  ( z  mod 
N )  ->  (
( ZRHom `  Y
) `  y )  =  ( ( ZRHom `  Y ) `  (
z  mod  N )
) )
132131rspceeqv 2905 . . . . . . . . . 10  |-  ( ( ( z  mod  N
)  e.  W  /\  ( ( ZRHom `  Y ) `  z
)  =  ( ( ZRHom `  Y ) `  ( z  mod  N
) ) )  ->  E. y  e.  W  ( ( ZRHom `  Y ) `  z
)  =  ( ( ZRHom `  Y ) `  y ) )
133111, 130, 132syl2anc 411 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  E. y  e.  W  ( ( ZRHom `  Y ) `  z
)  =  ( ( ZRHom `  Y ) `  y ) )
134 iftrue 3587 . . . . . . . . . . . . 13  |-  ( N  =  0  ->  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )  =  ZZ )
135134eleq2d 2279 . . . . . . . . . . . 12  |-  ( N  =  0  ->  (
z  e.  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )  <->  z  e.  ZZ ) )
136135biimpar 297 . . . . . . . . . . 11  |-  ( ( N  =  0  /\  z  e.  ZZ )  ->  z  e.  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) )
137136, 10eleqtrrdi 2303 . . . . . . . . . 10  |-  ( ( N  =  0  /\  z  e.  ZZ )  ->  z  e.  W
)
138 eqidd 2210 . . . . . . . . . 10  |-  ( ( N  =  0  /\  z  e.  ZZ )  ->  ( ( ZRHom `  Y ) `  z
)  =  ( ( ZRHom `  Y ) `  z ) )
139 fveq2 5603 . . . . . . . . . . 11  |-  ( y  =  z  ->  (
( ZRHom `  Y
) `  y )  =  ( ( ZRHom `  Y ) `  z
) )
140139rspceeqv 2905 . . . . . . . . . 10  |-  ( ( z  e.  W  /\  ( ( ZRHom `  Y ) `  z
)  =  ( ( ZRHom `  Y ) `  z ) )  ->  E. y  e.  W  ( ( ZRHom `  Y ) `  z
)  =  ( ( ZRHom `  Y ) `  y ) )
141137, 138, 140syl2anc 411 . . . . . . . . 9  |-  ( ( N  =  0  /\  z  e.  ZZ )  ->  E. y  e.  W  ( ( ZRHom `  Y ) `  z
)  =  ( ( ZRHom `  Y ) `  y ) )
142133, 141jaoian 799 . . . . . . . 8  |-  ( ( ( N  e.  NN  \/  N  =  0
)  /\  z  e.  ZZ )  ->  E. y  e.  W  ( ( ZRHom `  Y ) `  z )  =  ( ( ZRHom `  Y
) `  y )
)
14350, 142sylanb 284 . . . . . . 7  |-  ( ( N  e.  NN0  /\  z  e.  ZZ )  ->  E. y  e.  W  ( ( ZRHom `  Y ) `  z
)  =  ( ( ZRHom `  Y ) `  y ) )
14437, 38eqtrid 2254 . . . . . . . . 9  |-  ( y  e.  W  ->  ( F `  y )  =  ( ( ZRHom `  Y ) `  y
) )
145144eqeq2d 2221 . . . . . . . 8  |-  ( y  e.  W  ->  (
( ( ZRHom `  Y ) `  z
)  =  ( F `
 y )  <->  ( ( ZRHom `  Y ) `  z )  =  ( ( ZRHom `  Y
) `  y )
) )
146145rexbiia 2525 . . . . . . 7  |-  ( E. y  e.  W  ( ( ZRHom `  Y
) `  z )  =  ( F `  y )  <->  E. y  e.  W  ( ( ZRHom `  Y ) `  z )  =  ( ( ZRHom `  Y
) `  y )
)
147143, 146sylibr 134 . . . . . 6  |-  ( ( N  e.  NN0  /\  z  e.  ZZ )  ->  E. y  e.  W  ( ( ZRHom `  Y ) `  z
)  =  ( F `
 y ) )
148147ralrimiva 2583 . . . . 5  |-  ( N  e.  NN0  ->  A. z  e.  ZZ  E. y  e.  W  ( ( ZRHom `  Y ) `  z
)  =  ( F `
 y ) )
1491, 7, 4znzrhfo 14577 . . . . . 6  |-  ( N  e.  NN0  ->  ( ZRHom `  Y ) : ZZ -onto-> B )
150 fofn 5526 . . . . . 6  |-  ( ( ZRHom `  Y ) : ZZ -onto-> B  ->  ( ZRHom `  Y )  Fn  ZZ )
151 eqeq1 2216 . . . . . . . 8  |-  ( x  =  ( ( ZRHom `  Y ) `  z
)  ->  ( x  =  ( F `  y )  <->  ( ( ZRHom `  Y ) `  z )  =  ( F `  y ) ) )
152151rexbidv 2511 . . . . . . 7  |-  ( x  =  ( ( ZRHom `  Y ) `  z
)  ->  ( E. y  e.  W  x  =  ( F `  y )  <->  E. y  e.  W  ( ( ZRHom `  Y ) `  z )  =  ( F `  y ) ) )
153152ralrn 5746 . . . . . 6  |-  ( ( ZRHom `  Y )  Fn  ZZ  ->  ( A. x  e.  ran  ( ZRHom `  Y ) E. y  e.  W  x  =  ( F `  y )  <->  A. z  e.  ZZ  E. y  e.  W  ( ( ZRHom `  Y
) `  z )  =  ( F `  y ) ) )
154149, 150, 1533syl 17 . . . . 5  |-  ( N  e.  NN0  ->  ( A. x  e.  ran  ( ZRHom `  Y ) E. y  e.  W  x  =  ( F `  y )  <->  A. z  e.  ZZ  E. y  e.  W  ( ( ZRHom `  Y
) `  z )  =  ( F `  y ) ) )
155148, 154mpbird 167 . . . 4  |-  ( N  e.  NN0  ->  A. x  e.  ran  ( ZRHom `  Y ) E. y  e.  W  x  =  ( F `  y ) )
156 forn 5527 . . . . 5  |-  ( ( ZRHom `  Y ) : ZZ -onto-> B  ->  ran  ( ZRHom `  Y )  =  B )
157149, 156syl 14 . . . 4  |-  ( N  e.  NN0  ->  ran  ( ZRHom `  Y )  =  B )
158155, 157raleqtrdv 2716 . . 3  |-  ( N  e.  NN0  ->  A. x  e.  B  E. y  e.  W  x  =  ( F `  y ) )
159 dffo3 5755 . . 3  |-  ( F : W -onto-> B  <->  ( F : W --> B  /\  A. x  e.  B  E. y  e.  W  x  =  ( F `  y ) ) )
16032, 158, 159sylanbrc 417 . 2  |-  ( N  e.  NN0  ->  F : W -onto-> B )
161 df-f1o 5301 . 2  |-  ( F : W -1-1-onto-> B  <->  ( F : W -1-1-> B  /\  F : W -onto-> B ) )
162107, 160, 161sylanbrc 417 1  |-  ( N  e.  NN0  ->  F : W
-1-1-onto-> B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 712  DECID wdc 838    = wceq 1375    e. wcel 2180    =/= wne 2380   A.wral 2488   E.wrex 2489    C_ wss 3177   ifcif 3582   class class class wbr 4062   ran crn 4697    |` cres 4698    Fn wfn 5289   -->wf 5290   -1-1->wf1 5291   -onto->wfo 5292   -1-1-onto->wf1o 5293   ` cfv 5294  (class class class)co 5974   0cc0 7967    < clt 8149    <_ cle 8150    - cmin 8285   NNcn 9078   NN0cn0 9337   ZZcz 9414   QQcq 9782  ..^cfzo 10306    mod cmo 10511    || cdvds 12264   Basecbs 12998   Ringcrg 13925   CRingccrg 13926   RingHom crh 14079  ℤringczring 14519   ZRHomczrh 14540  ℤ/nczn 14542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-addf 8089  ax-mulf 8090
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-tp 3654  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-tpos 6361  df-recs 6421  df-frec 6507  df-er 6650  df-ec 6652  df-qs 6656  df-map 6767  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-z 9415  df-dec 9547  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-fzo 10307  df-fl 10457  df-mod 10512  df-seqfrec 10637  df-cj 11319  df-abs 11476  df-dvds 12265  df-struct 13000  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-iress 13006  df-plusg 13089  df-mulr 13090  df-starv 13091  df-sca 13092  df-vsca 13093  df-ip 13094  df-tset 13095  df-ple 13096  df-ds 13098  df-unif 13099  df-0g 13257  df-topgen 13259  df-iimas 13301  df-qus 13302  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-mhm 13458  df-grp 13502  df-minusg 13503  df-sbg 13504  df-mulg 13623  df-subg 13673  df-nsg 13674  df-eqg 13675  df-ghm 13744  df-cmn 13789  df-abl 13790  df-mgp 13850  df-rng 13862  df-ur 13889  df-srg 13893  df-ring 13927  df-cring 13928  df-oppr 13997  df-dvdsr 14018  df-rhm 14081  df-subrg 14148  df-lmod 14218  df-lssm 14282  df-lsp 14316  df-sra 14364  df-rgmod 14365  df-lidl 14398  df-rsp 14399  df-2idl 14429  df-bl 14475  df-mopn 14476  df-fg 14478  df-metu 14479  df-cnfld 14486  df-zring 14520  df-zrh 14543  df-zn 14545
This theorem is referenced by:  znleval  14582  znfi  14584  znhash  14585
  Copyright terms: Public domain W3C validator