ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znf1o Unicode version

Theorem znf1o 14150
Description: The function  F enumerates all equivalence classes in ℤ/nℤ for each  n. When  n  = 
0,  ZZ  /  0 ZZ  =  ZZ  /  {
0 }  ~~  ZZ so we let  W  =  ZZ; otherwise  W  =  { 0 , 
... ,  n  - 
1 } enumerates all the equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by Mario Carneiro, 2-May-2016.) (Revised by AV, 13-Jun-2019.)
Hypotheses
Ref Expression
znf1o.y  |-  Y  =  (ℤ/n `  N )
znf1o.b  |-  B  =  ( Base `  Y
)
znf1o.f  |-  F  =  ( ( ZRHom `  Y )  |`  W )
znf1o.w  |-  W  =  if ( N  =  0 ,  ZZ , 
( 0..^ N ) )
Assertion
Ref Expression
znf1o  |-  ( N  e.  NN0  ->  F : W
-1-1-onto-> B )

Proof of Theorem znf1o
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 znf1o.y . . . . . . 7  |-  Y  =  (ℤ/n `  N )
21zncrng 14144 . . . . . 6  |-  ( N  e.  NN0  ->  Y  e. 
CRing )
3 crngring 13507 . . . . . 6  |-  ( Y  e.  CRing  ->  Y  e.  Ring )
4 eqid 2193 . . . . . . 7  |-  ( ZRHom `  Y )  =  ( ZRHom `  Y )
54zrhrhm 14122 . . . . . 6  |-  ( Y  e.  Ring  ->  ( ZRHom `  Y )  e.  (ring RingHom  Y
) )
6 zringbas 14095 . . . . . . 7  |-  ZZ  =  ( Base ` ring )
7 znf1o.b . . . . . . 7  |-  B  =  ( Base `  Y
)
86, 7rhmf 13662 . . . . . 6  |-  ( ( ZRHom `  Y )  e.  (ring RingHom  Y )  ->  ( ZRHom `  Y ) : ZZ --> B )
92, 3, 5, 84syl 18 . . . . 5  |-  ( N  e.  NN0  ->  ( ZRHom `  Y ) : ZZ --> B )
10 znf1o.w . . . . . . . 8  |-  W  =  if ( N  =  0 ,  ZZ , 
( 0..^ N ) )
11 simpr 110 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  N  =  0 )  ->  N  =  0 )
1211iftrued 3565 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  N  =  0 )  ->  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )  =  ZZ )
1310, 12eqtrid 2238 . . . . . . 7  |-  ( ( N  e.  NN0  /\  N  =  0 )  ->  W  =  ZZ )
14 ssid 3200 . . . . . . 7  |-  ZZ  C_  ZZ
1513, 14eqsstrdi 3232 . . . . . 6  |-  ( ( N  e.  NN0  /\  N  =  0 )  ->  W  C_  ZZ )
16 simpr 110 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  -.  N  =  0
)  ->  -.  N  =  0 )
1716iffalsed 3568 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  -.  N  =  0
)  ->  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )  =  ( 0..^ N ) )
1810, 17eqtrid 2238 . . . . . . 7  |-  ( ( N  e.  NN0  /\  -.  N  =  0
)  ->  W  =  ( 0..^ N ) )
19 elfzoelz 10216 . . . . . . . 8  |-  ( x  e.  ( 0..^ N )  ->  x  e.  ZZ )
2019ssriv 3184 . . . . . . 7  |-  ( 0..^ N )  C_  ZZ
2118, 20eqsstrdi 3232 . . . . . 6  |-  ( ( N  e.  NN0  /\  -.  N  =  0
)  ->  W  C_  ZZ )
22 nn0z 9340 . . . . . . . 8  |-  ( N  e.  NN0  ->  N  e.  ZZ )
23 0z 9331 . . . . . . . 8  |-  0  e.  ZZ
24 zdceq 9395 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
2522, 23, 24sylancl 413 . . . . . . 7  |-  ( N  e.  NN0  -> DECID  N  =  0
)
26 exmiddc 837 . . . . . . 7  |-  (DECID  N  =  0  ->  ( N  =  0  \/  -.  N  =  0 ) )
2725, 26syl 14 . . . . . 6  |-  ( N  e.  NN0  ->  ( N  =  0  \/  -.  N  =  0 ) )
2815, 21, 27mpjaodan 799 . . . . 5  |-  ( N  e.  NN0  ->  W  C_  ZZ )
299, 28fssresd 5431 . . . 4  |-  ( N  e.  NN0  ->  ( ( ZRHom `  Y )  |`  W ) : W --> B )
30 znf1o.f . . . . 5  |-  F  =  ( ( ZRHom `  Y )  |`  W )
3130feq1i 5397 . . . 4  |-  ( F : W --> B  <->  ( ( ZRHom `  Y )  |`  W ) : W --> B )
3229, 31sylibr 134 . . 3  |-  ( N  e.  NN0  ->  F : W
--> B )
3330fveq1i 5556 . . . . . . . 8  |-  ( F `
 x )  =  ( ( ( ZRHom `  Y )  |`  W ) `
 x )
34 fvres 5579 . . . . . . . . 9  |-  ( x  e.  W  ->  (
( ( ZRHom `  Y )  |`  W ) `
 x )  =  ( ( ZRHom `  Y ) `  x
) )
3534ad2antrl 490 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
( ( ZRHom `  Y )  |`  W ) `
 x )  =  ( ( ZRHom `  Y ) `  x
) )
3633, 35eqtrid 2238 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  ( F `  x )  =  ( ( ZRHom `  Y ) `  x
) )
3730fveq1i 5556 . . . . . . . 8  |-  ( F `
 y )  =  ( ( ( ZRHom `  Y )  |`  W ) `
 y )
38 fvres 5579 . . . . . . . . 9  |-  ( y  e.  W  ->  (
( ( ZRHom `  Y )  |`  W ) `
 y )  =  ( ( ZRHom `  Y ) `  y
) )
3938ad2antll 491 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
( ( ZRHom `  Y )  |`  W ) `
 y )  =  ( ( ZRHom `  Y ) `  y
) )
4037, 39eqtrid 2238 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  ( F `  y )  =  ( ( ZRHom `  Y ) `  y
) )
4136, 40eqeq12d 2208 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
( F `  x
)  =  ( F `
 y )  <->  ( ( ZRHom `  Y ) `  x )  =  ( ( ZRHom `  Y
) `  y )
) )
42 simpl 109 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  N  e.  NN0 )
4328adantr 276 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  W  C_  ZZ )
44 simprl 529 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  x  e.  W )
4543, 44sseldd 3181 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  x  e.  ZZ )
46 simprr 531 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  y  e.  W )
4743, 46sseldd 3181 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  y  e.  ZZ )
481, 4zndvds 14148 . . . . . . 7  |-  ( ( N  e.  NN0  /\  x  e.  ZZ  /\  y  e.  ZZ )  ->  (
( ( ZRHom `  Y ) `  x
)  =  ( ( ZRHom `  Y ) `  y )  <->  N  ||  (
x  -  y ) ) )
4942, 45, 47, 48syl3anc 1249 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
( ( ZRHom `  Y ) `  x
)  =  ( ( ZRHom `  Y ) `  y )  <->  N  ||  (
x  -  y ) ) )
50 elnn0 9245 . . . . . . 7  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
51 simpl 109 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  N  e.  NN )
5251nnnn0d 9296 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  N  e.  NN0 )
5352, 28syl 14 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  W  C_  ZZ )
54 simprl 529 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  x  e.  W )
5553, 54sseldd 3181 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  x  e.  ZZ )
56 simprr 531 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  y  e.  W )
5753, 56sseldd 3181 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  y  e.  ZZ )
58 moddvds 11945 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  x  e.  ZZ  /\  y  e.  ZZ )  ->  (
( x  mod  N
)  =  ( y  mod  N )  <->  N  ||  (
x  -  y ) ) )
5951, 55, 57, 58syl3anc 1249 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
( x  mod  N
)  =  ( y  mod  N )  <->  N  ||  (
x  -  y ) ) )
60 zq 9694 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  x  e.  QQ )
6155, 60syl 14 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  x  e.  QQ )
62 nnq 9701 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  N  e.  QQ )
6362adantr 276 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  N  e.  QQ )
64 nnne0 9012 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  N  =/=  0 )
65 ifnefalse 3569 . . . . . . . . . . . . . . . 16  |-  ( N  =/=  0  ->  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )  =  ( 0..^ N ) )
6664, 65syl 14 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )  =  ( 0..^ N ) )
6710, 66eqtrid 2238 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  W  =  ( 0..^ N ) )
6867adantr 276 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  W  =  ( 0..^ N ) )
6954, 68eleqtrd 2272 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  x  e.  ( 0..^ N ) )
70 elfzole1 10225 . . . . . . . . . . . 12  |-  ( x  e.  ( 0..^ N )  ->  0  <_  x )
7169, 70syl 14 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  0  <_  x )
72 elfzolt2 10226 . . . . . . . . . . . 12  |-  ( x  e.  ( 0..^ N )  ->  x  <  N )
7369, 72syl 14 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  x  <  N )
74 modqid 10423 . . . . . . . . . . 11  |-  ( ( ( x  e.  QQ  /\  N  e.  QQ )  /\  ( 0  <_  x  /\  x  <  N
) )  ->  (
x  mod  N )  =  x )
7561, 63, 71, 73, 74syl22anc 1250 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
x  mod  N )  =  x )
76 zq 9694 . . . . . . . . . . . 12  |-  ( y  e.  ZZ  ->  y  e.  QQ )
7757, 76syl 14 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  y  e.  QQ )
7856, 68eleqtrd 2272 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  y  e.  ( 0..^ N ) )
79 elfzole1 10225 . . . . . . . . . . . 12  |-  ( y  e.  ( 0..^ N )  ->  0  <_  y )
8078, 79syl 14 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  0  <_  y )
81 elfzolt2 10226 . . . . . . . . . . . 12  |-  ( y  e.  ( 0..^ N )  ->  y  <  N )
8278, 81syl 14 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  y  <  N )
83 modqid 10423 . . . . . . . . . . 11  |-  ( ( ( y  e.  QQ  /\  N  e.  QQ )  /\  ( 0  <_ 
y  /\  y  <  N ) )  ->  (
y  mod  N )  =  y )
8477, 63, 80, 82, 83syl22anc 1250 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
y  mod  N )  =  y )
8575, 84eqeq12d 2208 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
( x  mod  N
)  =  ( y  mod  N )  <->  x  =  y ) )
8659, 85bitr3d 190 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( x  e.  W  /\  y  e.  W
) )  ->  ( N  ||  ( x  -  y )  <->  x  =  y ) )
87 simpl 109 . . . . . . . . . 10  |-  ( ( N  =  0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  N  =  0 )
8887breq1d 4040 . . . . . . . . 9  |-  ( ( N  =  0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  ( N  ||  ( x  -  y )  <->  0  ||  ( x  -  y
) ) )
89 id 19 . . . . . . . . . . . . 13  |-  ( N  =  0  ->  N  =  0 )
90 0nn0 9258 . . . . . . . . . . . . 13  |-  0  e.  NN0
9189, 90eqeltrdi 2284 . . . . . . . . . . . 12  |-  ( N  =  0  ->  N  e.  NN0 )
9291, 45sylan 283 . . . . . . . . . . 11  |-  ( ( N  =  0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  x  e.  ZZ )
9391, 47sylan 283 . . . . . . . . . . 11  |-  ( ( N  =  0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  y  e.  ZZ )
9492, 93zsubcld 9447 . . . . . . . . . 10  |-  ( ( N  =  0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
x  -  y )  e.  ZZ )
95 0dvds 11957 . . . . . . . . . 10  |-  ( ( x  -  y )  e.  ZZ  ->  (
0  ||  ( x  -  y )  <->  ( x  -  y )  =  0 ) )
9694, 95syl 14 . . . . . . . . 9  |-  ( ( N  =  0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
0  ||  ( x  -  y )  <->  ( x  -  y )  =  0 ) )
9792zcnd 9443 . . . . . . . . . 10  |-  ( ( N  =  0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  x  e.  CC )
9893zcnd 9443 . . . . . . . . . 10  |-  ( ( N  =  0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  y  e.  CC )
9997, 98subeq0ad 8342 . . . . . . . . 9  |-  ( ( N  =  0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
( x  -  y
)  =  0  <->  x  =  y ) )
10088, 96, 993bitrd 214 . . . . . . . 8  |-  ( ( N  =  0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  ( N  ||  ( x  -  y )  <->  x  =  y ) )
10186, 100jaoian 796 . . . . . . 7  |-  ( ( ( N  e.  NN  \/  N  =  0
)  /\  ( x  e.  W  /\  y  e.  W ) )  -> 
( N  ||  (
x  -  y )  <-> 
x  =  y ) )
10250, 101sylanb 284 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  ( N  ||  ( x  -  y )  <->  x  =  y ) )
10341, 49, 1023bitrd 214 . . . . 5  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
( F `  x
)  =  ( F `
 y )  <->  x  =  y ) )
104103biimpd 144 . . . 4  |-  ( ( N  e.  NN0  /\  ( x  e.  W  /\  y  e.  W
) )  ->  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
)
105104ralrimivva 2576 . . 3  |-  ( N  e.  NN0  ->  A. x  e.  W  A. y  e.  W  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) )
106 dff13 5812 . . 3  |-  ( F : W -1-1-> B  <->  ( F : W --> B  /\  A. x  e.  W  A. y  e.  W  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
10732, 105, 106sylanbrc 417 . 2  |-  ( N  e.  NN0  ->  F : W -1-1-> B )
108 zmodfzo 10421 . . . . . . . . . . . 12  |-  ( ( z  e.  ZZ  /\  N  e.  NN )  ->  ( z  mod  N
)  e.  ( 0..^ N ) )
109108ancoms 268 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  ( z  mod  N
)  e.  ( 0..^ N ) )
11067adantr 276 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  W  =  ( 0..^ N ) )
111109, 110eleqtrrd 2273 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  ( z  mod  N
)  e.  W )
112 zq 9694 . . . . . . . . . . . . . . 15  |-  ( z  e.  ZZ  ->  z  e.  QQ )
113112adantl 277 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  z  e.  QQ )
11462adantr 276 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  N  e.  QQ )
115 nngt0 9009 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  0  <  N )
116115adantr 276 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  0  <  N )
117 modqabs2 10432 . . . . . . . . . . . . . 14  |-  ( ( z  e.  QQ  /\  N  e.  QQ  /\  0  <  N )  ->  (
( z  mod  N
)  mod  N )  =  ( z  mod 
N ) )
118113, 114, 116, 117syl3anc 1249 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  ( ( z  mod 
N )  mod  N
)  =  ( z  mod  N ) )
119 simpl 109 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  N  e.  NN )
12020, 109sselid 3178 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  ( z  mod  N
)  e.  ZZ )
121 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  z  e.  ZZ )
122 moddvds 11945 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  ( z  mod  N
)  e.  ZZ  /\  z  e.  ZZ )  ->  ( ( ( z  mod  N )  mod 
N )  =  ( z  mod  N )  <-> 
N  ||  ( (
z  mod  N )  -  z ) ) )
123119, 120, 121, 122syl3anc 1249 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  ( ( ( z  mod  N )  mod 
N )  =  ( z  mod  N )  <-> 
N  ||  ( (
z  mod  N )  -  z ) ) )
124118, 123mpbid 147 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  N  ||  ( ( z  mod  N )  -  z ) )
125 nnnn0 9250 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  N  e.  NN0 )
126125adantr 276 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  N  e.  NN0 )
1271, 4zndvds 14148 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  ( z  mod  N
)  e.  ZZ  /\  z  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  (
z  mod  N )
)  =  ( ( ZRHom `  Y ) `  z )  <->  N  ||  (
( z  mod  N
)  -  z ) ) )
128126, 120, 121, 127syl3anc 1249 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  ( ( ( ZRHom `  Y ) `  (
z  mod  N )
)  =  ( ( ZRHom `  Y ) `  z )  <->  N  ||  (
( z  mod  N
)  -  z ) ) )
129124, 128mpbird 167 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  ( ( ZRHom `  Y ) `  (
z  mod  N )
)  =  ( ( ZRHom `  Y ) `  z ) )
130129eqcomd 2199 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  ( ( ZRHom `  Y ) `  z
)  =  ( ( ZRHom `  Y ) `  ( z  mod  N
) ) )
131 fveq2 5555 . . . . . . . . . . 11  |-  ( y  =  ( z  mod 
N )  ->  (
( ZRHom `  Y
) `  y )  =  ( ( ZRHom `  Y ) `  (
z  mod  N )
) )
132131rspceeqv 2883 . . . . . . . . . 10  |-  ( ( ( z  mod  N
)  e.  W  /\  ( ( ZRHom `  Y ) `  z
)  =  ( ( ZRHom `  Y ) `  ( z  mod  N
) ) )  ->  E. y  e.  W  ( ( ZRHom `  Y ) `  z
)  =  ( ( ZRHom `  Y ) `  y ) )
133111, 130, 132syl2anc 411 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  z  e.  ZZ )  ->  E. y  e.  W  ( ( ZRHom `  Y ) `  z
)  =  ( ( ZRHom `  Y ) `  y ) )
134 iftrue 3563 . . . . . . . . . . . . 13  |-  ( N  =  0  ->  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )  =  ZZ )
135134eleq2d 2263 . . . . . . . . . . . 12  |-  ( N  =  0  ->  (
z  e.  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) )  <->  z  e.  ZZ ) )
136135biimpar 297 . . . . . . . . . . 11  |-  ( ( N  =  0  /\  z  e.  ZZ )  ->  z  e.  if ( N  =  0 ,  ZZ ,  ( 0..^ N ) ) )
137136, 10eleqtrrdi 2287 . . . . . . . . . 10  |-  ( ( N  =  0  /\  z  e.  ZZ )  ->  z  e.  W
)
138 eqidd 2194 . . . . . . . . . 10  |-  ( ( N  =  0  /\  z  e.  ZZ )  ->  ( ( ZRHom `  Y ) `  z
)  =  ( ( ZRHom `  Y ) `  z ) )
139 fveq2 5555 . . . . . . . . . . 11  |-  ( y  =  z  ->  (
( ZRHom `  Y
) `  y )  =  ( ( ZRHom `  Y ) `  z
) )
140139rspceeqv 2883 . . . . . . . . . 10  |-  ( ( z  e.  W  /\  ( ( ZRHom `  Y ) `  z
)  =  ( ( ZRHom `  Y ) `  z ) )  ->  E. y  e.  W  ( ( ZRHom `  Y ) `  z
)  =  ( ( ZRHom `  Y ) `  y ) )
141137, 138, 140syl2anc 411 . . . . . . . . 9  |-  ( ( N  =  0  /\  z  e.  ZZ )  ->  E. y  e.  W  ( ( ZRHom `  Y ) `  z
)  =  ( ( ZRHom `  Y ) `  y ) )
142133, 141jaoian 796 . . . . . . . 8  |-  ( ( ( N  e.  NN  \/  N  =  0
)  /\  z  e.  ZZ )  ->  E. y  e.  W  ( ( ZRHom `  Y ) `  z )  =  ( ( ZRHom `  Y
) `  y )
)
14350, 142sylanb 284 . . . . . . 7  |-  ( ( N  e.  NN0  /\  z  e.  ZZ )  ->  E. y  e.  W  ( ( ZRHom `  Y ) `  z
)  =  ( ( ZRHom `  Y ) `  y ) )
14437, 38eqtrid 2238 . . . . . . . . 9  |-  ( y  e.  W  ->  ( F `  y )  =  ( ( ZRHom `  Y ) `  y
) )
145144eqeq2d 2205 . . . . . . . 8  |-  ( y  e.  W  ->  (
( ( ZRHom `  Y ) `  z
)  =  ( F `
 y )  <->  ( ( ZRHom `  Y ) `  z )  =  ( ( ZRHom `  Y
) `  y )
) )
146145rexbiia 2509 . . . . . . 7  |-  ( E. y  e.  W  ( ( ZRHom `  Y
) `  z )  =  ( F `  y )  <->  E. y  e.  W  ( ( ZRHom `  Y ) `  z )  =  ( ( ZRHom `  Y
) `  y )
)
147143, 146sylibr 134 . . . . . 6  |-  ( ( N  e.  NN0  /\  z  e.  ZZ )  ->  E. y  e.  W  ( ( ZRHom `  Y ) `  z
)  =  ( F `
 y ) )
148147ralrimiva 2567 . . . . 5  |-  ( N  e.  NN0  ->  A. z  e.  ZZ  E. y  e.  W  ( ( ZRHom `  Y ) `  z
)  =  ( F `
 y ) )
1491, 7, 4znzrhfo 14147 . . . . . 6  |-  ( N  e.  NN0  ->  ( ZRHom `  Y ) : ZZ -onto-> B )
150 fofn 5479 . . . . . 6  |-  ( ( ZRHom `  Y ) : ZZ -onto-> B  ->  ( ZRHom `  Y )  Fn  ZZ )
151 eqeq1 2200 . . . . . . . 8  |-  ( x  =  ( ( ZRHom `  Y ) `  z
)  ->  ( x  =  ( F `  y )  <->  ( ( ZRHom `  Y ) `  z )  =  ( F `  y ) ) )
152151rexbidv 2495 . . . . . . 7  |-  ( x  =  ( ( ZRHom `  Y ) `  z
)  ->  ( E. y  e.  W  x  =  ( F `  y )  <->  E. y  e.  W  ( ( ZRHom `  Y ) `  z )  =  ( F `  y ) ) )
153152ralrn 5697 . . . . . 6  |-  ( ( ZRHom `  Y )  Fn  ZZ  ->  ( A. x  e.  ran  ( ZRHom `  Y ) E. y  e.  W  x  =  ( F `  y )  <->  A. z  e.  ZZ  E. y  e.  W  ( ( ZRHom `  Y
) `  z )  =  ( F `  y ) ) )
154149, 150, 1533syl 17 . . . . 5  |-  ( N  e.  NN0  ->  ( A. x  e.  ran  ( ZRHom `  Y ) E. y  e.  W  x  =  ( F `  y )  <->  A. z  e.  ZZ  E. y  e.  W  ( ( ZRHom `  Y
) `  z )  =  ( F `  y ) ) )
155148, 154mpbird 167 . . . 4  |-  ( N  e.  NN0  ->  A. x  e.  ran  ( ZRHom `  Y ) E. y  e.  W  x  =  ( F `  y ) )
156 forn 5480 . . . . 5  |-  ( ( ZRHom `  Y ) : ZZ -onto-> B  ->  ran  ( ZRHom `  Y )  =  B )
157149, 156syl 14 . . . 4  |-  ( N  e.  NN0  ->  ran  ( ZRHom `  Y )  =  B )
158155, 157raleqtrdv 2698 . . 3  |-  ( N  e.  NN0  ->  A. x  e.  B  E. y  e.  W  x  =  ( F `  y ) )
159 dffo3 5706 . . 3  |-  ( F : W -onto-> B  <->  ( F : W --> B  /\  A. x  e.  B  E. y  e.  W  x  =  ( F `  y ) ) )
16032, 158, 159sylanbrc 417 . 2  |-  ( N  e.  NN0  ->  F : W -onto-> B )
161 df-f1o 5262 . 2  |-  ( F : W -1-1-onto-> B  <->  ( F : W -1-1-> B  /\  F : W -onto-> B ) )
162107, 160, 161sylanbrc 417 1  |-  ( N  e.  NN0  ->  F : W
-1-1-onto-> B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2164    =/= wne 2364   A.wral 2472   E.wrex 2473    C_ wss 3154   ifcif 3558   class class class wbr 4030   ran crn 4661    |` cres 4662    Fn wfn 5250   -->wf 5251   -1-1->wf1 5252   -onto->wfo 5253   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5919   0cc0 7874    < clt 8056    <_ cle 8057    - cmin 8192   NNcn 8984   NN0cn0 9243   ZZcz 9320   QQcq 9687  ..^cfzo 10211    mod cmo 10396    || cdvds 11933   Basecbs 12621   Ringcrg 13495   CRingccrg 13496   RingHom crh 13649  ℤringczring 14089   ZRHomczrh 14110  ℤ/nczn 14112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-addf 7996  ax-mulf 7997
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-tp 3627  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-tpos 6300  df-recs 6360  df-frec 6446  df-er 6589  df-ec 6591  df-qs 6595  df-map 6706  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-9 9050  df-n0 9244  df-z 9321  df-dec 9452  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-fl 10342  df-mod 10397  df-seqfrec 10522  df-cj 10989  df-abs 11146  df-dvds 11934  df-struct 12623  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-mulr 12712  df-starv 12713  df-sca 12714  df-vsca 12715  df-ip 12716  df-tset 12717  df-ple 12718  df-ds 12720  df-unif 12721  df-0g 12872  df-topgen 12874  df-iimas 12888  df-qus 12889  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-mhm 13034  df-grp 13078  df-minusg 13079  df-sbg 13080  df-mulg 13193  df-subg 13243  df-nsg 13244  df-eqg 13245  df-ghm 13314  df-cmn 13359  df-abl 13360  df-mgp 13420  df-rng 13432  df-ur 13459  df-srg 13463  df-ring 13497  df-cring 13498  df-oppr 13567  df-dvdsr 13588  df-rhm 13651  df-subrg 13718  df-lmod 13788  df-lssm 13852  df-lsp 13886  df-sra 13934  df-rgmod 13935  df-lidl 13968  df-rsp 13969  df-2idl 13999  df-bl 14045  df-mopn 14046  df-fg 14048  df-metu 14049  df-cnfld 14056  df-zring 14090  df-zrh 14113  df-zn 14115
This theorem is referenced by:  znleval  14152  znfi  14154  znhash  14155
  Copyright terms: Public domain W3C validator