ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  upgr2wlkdc Unicode version

Theorem upgr2wlkdc 16096
Description: Properties of a pair of functions to be a walk of length 2 in a pseudograph. Note that the vertices need not to be distinct and the edges can be loops or multiedges. (Contributed by Alexander van der Vekens, 16-Feb-2018.) (Revised by AV, 3-Jan-2021.) (Revised by AV, 28-Oct-2021.)
Hypotheses
Ref Expression
upgr2wlk.v  |-  V  =  (Vtx `  G )
upgr2wlk.i  |-  I  =  (iEdg `  G )
Assertion
Ref Expression
upgr2wlkdc  |-  ( G  e. UPGraph  ->  ( ( F (Walks `  G ) P  /\  F  ~~  2o ) 
<->  ( ( F :
( 0..^ 2 ) --> dom  I  /\  P : ( 0 ... 2 ) --> V  /\  A. k  e.  { 0 ,  1 }DECID  ( P `
 k )  =  ( P `  (
k  +  1 ) ) )  /\  (
( I `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( I `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } ) ) ) )
Distinct variable groups:    k, F    P, k    k, G    k, I    k, V

Proof of Theorem upgr2wlkdc
StepHypRef Expression
1 simprl 529 . . . . . . . 8  |-  ( ( G  e. UPGraph  /\  ( F (Walks `  G ) P  /\  F  ~~  2o ) )  ->  F
(Walks `  G ) P )
2 upgr2wlk.v . . . . . . . . . 10  |-  V  =  (Vtx `  G )
3 upgr2wlk.i . . . . . . . . . 10  |-  I  =  (iEdg `  G )
42, 3upgriswlkdc 16081 . . . . . . . . 9  |-  ( G  e. UPGraph  ->  ( F (Walks `  G ) P  <->  ( F  e. Word  dom  I  /\  P : ( 0 ... ( `  F )
) --> V  /\  A. k  e.  ( 0..^ ( `  F )
) (DECID  ( P `  k
)  =  ( P `
 ( k  +  1 ) )  /\  ( I `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) ) )
54adantr 276 . . . . . . . 8  |-  ( ( G  e. UPGraph  /\  ( F (Walks `  G ) P  /\  F  ~~  2o ) )  ->  ( F (Walks `  G ) P 
<->  ( F  e. Word  dom  I  /\  P : ( 0 ... ( `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( `  F )
) (DECID  ( P `  k
)  =  ( P `
 ( k  +  1 ) )  /\  ( I `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) ) )
61, 5mpbid 147 . . . . . . 7  |-  ( ( G  e. UPGraph  /\  ( F (Walks `  G ) P  /\  F  ~~  2o ) )  ->  ( F  e. Word  dom  I  /\  P : ( 0 ... ( `  F )
) --> V  /\  A. k  e.  ( 0..^ ( `  F )
) (DECID  ( P `  k
)  =  ( P `
 ( k  +  1 ) )  /\  ( I `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) )
76simp1d 1033 . . . . . 6  |-  ( ( G  e. UPGraph  /\  ( F (Walks `  G ) P  /\  F  ~~  2o ) )  ->  F  e. Word  dom  I )
8 wrdf 11085 . . . . . 6  |-  ( F  e. Word  dom  I  ->  F : ( 0..^ ( `  F ) ) --> dom  I )
97, 8syl 14 . . . . 5  |-  ( ( G  e. UPGraph  /\  ( F (Walks `  G ) P  /\  F  ~~  2o ) )  ->  F : ( 0..^ ( `  F ) ) --> dom  I )
10 simprr 531 . . . . . . . 8  |-  ( ( G  e. UPGraph  /\  ( F (Walks `  G ) P  /\  F  ~~  2o ) )  ->  F  ~~  2o )
11 hash2en 11073 . . . . . . . . 9  |-  ( F 
~~  2o  <->  ( F  e. 
Fin  /\  ( `  F
)  =  2 ) )
1211simprbi 275 . . . . . . . 8  |-  ( F 
~~  2o  ->  ( `  F
)  =  2 )
1310, 12syl 14 . . . . . . 7  |-  ( ( G  e. UPGraph  /\  ( F (Walks `  G ) P  /\  F  ~~  2o ) )  ->  ( `  F )  =  2 )
1413oveq2d 6023 . . . . . 6  |-  ( ( G  e. UPGraph  /\  ( F (Walks `  G ) P  /\  F  ~~  2o ) )  ->  (
0..^ ( `  F )
)  =  ( 0..^ 2 ) )
1514feq2d 5461 . . . . 5  |-  ( ( G  e. UPGraph  /\  ( F (Walks `  G ) P  /\  F  ~~  2o ) )  ->  ( F : ( 0..^ ( `  F ) ) --> dom  I  <->  F : ( 0..^ 2 ) --> dom  I
) )
169, 15mpbid 147 . . . 4  |-  ( ( G  e. UPGraph  /\  ( F (Walks `  G ) P  /\  F  ~~  2o ) )  ->  F : ( 0..^ 2 ) --> dom  I )
176simp2d 1034 . . . . 5  |-  ( ( G  e. UPGraph  /\  ( F (Walks `  G ) P  /\  F  ~~  2o ) )  ->  P : ( 0 ... ( `  F )
) --> V )
1813oveq2d 6023 . . . . . 6  |-  ( ( G  e. UPGraph  /\  ( F (Walks `  G ) P  /\  F  ~~  2o ) )  ->  (
0 ... ( `  F
) )  =  ( 0 ... 2 ) )
1918feq2d 5461 . . . . 5  |-  ( ( G  e. UPGraph  /\  ( F (Walks `  G ) P  /\  F  ~~  2o ) )  ->  ( P : ( 0 ... ( `  F )
) --> V  <->  P :
( 0 ... 2
) --> V ) )
2017, 19mpbid 147 . . . 4  |-  ( ( G  e. UPGraph  /\  ( F (Walks `  G ) P  /\  F  ~~  2o ) )  ->  P : ( 0 ... 2 ) --> V )
216simp3d 1035 . . . . . 6  |-  ( ( G  e. UPGraph  /\  ( F (Walks `  G ) P  /\  F  ~~  2o ) )  ->  A. k  e.  ( 0..^ ( `  F
) ) (DECID  ( P `
 k )  =  ( P `  (
k  +  1 ) )  /\  ( I `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) )
22 simpl 109 . . . . . . 7  |-  ( (DECID  ( P `  k )  =  ( P `  ( k  +  1 ) )  /\  (
I `  ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  -> DECID  ( P `  k
)  =  ( P `
 ( k  +  1 ) ) )
2322ralimi 2593 . . . . . 6  |-  ( A. k  e.  ( 0..^ ( `  F )
) (DECID  ( P `  k
)  =  ( P `
 ( k  +  1 ) )  /\  ( I `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  ->  A. k  e.  ( 0..^ ( `  F
) )DECID  ( P `  k
)  =  ( P `
 ( k  +  1 ) ) )
2421, 23syl 14 . . . . 5  |-  ( ( G  e. UPGraph  /\  ( F (Walks `  G ) P  /\  F  ~~  2o ) )  ->  A. k  e.  ( 0..^ ( `  F
) )DECID  ( P `  k
)  =  ( P `
 ( k  +  1 ) ) )
25 oveq2 6015 . . . . . . 7  |-  ( ( `  F )  =  2  ->  ( 0..^ ( `  F ) )  =  ( 0..^ 2 ) )
26 fzo0to2pr 10432 . . . . . . 7  |-  ( 0..^ 2 )  =  {
0 ,  1 }
2725, 26eqtrdi 2278 . . . . . 6  |-  ( ( `  F )  =  2  ->  ( 0..^ ( `  F ) )  =  { 0 ,  1 } )
2813, 27syl 14 . . . . 5  |-  ( ( G  e. UPGraph  /\  ( F (Walks `  G ) P  /\  F  ~~  2o ) )  ->  (
0..^ ( `  F )
)  =  { 0 ,  1 } )
2924, 28raleqtrdv 2736 . . . 4  |-  ( ( G  e. UPGraph  /\  ( F (Walks `  G ) P  /\  F  ~~  2o ) )  ->  A. k  e.  { 0 ,  1 }DECID  ( P `  k
)  =  ( P `
 ( k  +  1 ) ) )
3016, 20, 293jca 1201 . . 3  |-  ( ( G  e. UPGraph  /\  ( F (Walks `  G ) P  /\  F  ~~  2o ) )  ->  ( F : ( 0..^ 2 ) --> dom  I  /\  P : ( 0 ... 2 ) --> V  /\  A. k  e.  { 0 ,  1 }DECID  ( P `
 k )  =  ( P `  (
k  +  1 ) ) ) )
31 simpr 110 . . . . . 6  |-  ( (DECID  ( P `  k )  =  ( P `  ( k  +  1 ) )  /\  (
I `  ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  ->  (
I `  ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )
3231ralimi 2593 . . . . 5  |-  ( A. k  e.  ( 0..^ ( `  F )
) (DECID  ( P `  k
)  =  ( P `
 ( k  +  1 ) )  /\  ( I `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  ->  A. k  e.  ( 0..^ ( `  F
) ) ( I `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )
3321, 32syl 14 . . . 4  |-  ( ( G  e. UPGraph  /\  ( F (Walks `  G ) P  /\  F  ~~  2o ) )  ->  A. k  e.  ( 0..^ ( `  F
) ) ( I `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )
3428raleqdv 2734 . . . . 5  |-  ( ( G  e. UPGraph  /\  ( F (Walks `  G ) P  /\  F  ~~  2o ) )  ->  ( A. k  e.  (
0..^ ( `  F )
) ( I `  ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  <->  A. k  e.  { 0 ,  1 }  ( I `  ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) )
35 2wlklem 16095 . . . . 5  |-  ( A. k  e.  { 0 ,  1 }  (
I `  ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  <->  ( ( I `
 ( F ` 
0 ) )  =  { ( P ` 
0 ) ,  ( P `  1 ) }  /\  ( I `
 ( F ` 
1 ) )  =  { ( P ` 
1 ) ,  ( P `  2 ) } ) )
3634, 35bitrdi 196 . . . 4  |-  ( ( G  e. UPGraph  /\  ( F (Walks `  G ) P  /\  F  ~~  2o ) )  ->  ( A. k  e.  (
0..^ ( `  F )
) ( I `  ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  <->  ( (
I `  ( F `  0 ) )  =  { ( P `
 0 ) ,  ( P `  1
) }  /\  (
I `  ( F `  1 ) )  =  { ( P `
 1 ) ,  ( P `  2
) } ) ) )
3733, 36mpbid 147 . . 3  |-  ( ( G  e. UPGraph  /\  ( F (Walks `  G ) P  /\  F  ~~  2o ) )  ->  (
( I `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( I `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } ) )
3830, 37jca 306 . 2  |-  ( ( G  e. UPGraph  /\  ( F (Walks `  G ) P  /\  F  ~~  2o ) )  ->  (
( F : ( 0..^ 2 ) --> dom  I  /\  P :
( 0 ... 2
) --> V  /\  A. k  e.  { 0 ,  1 }DECID  ( P `
 k )  =  ( P `  (
k  +  1 ) ) )  /\  (
( I `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( I `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } ) ) )
39 simprl1 1066 . . . . . 6  |-  ( ( G  e. UPGraph  /\  (
( F : ( 0..^ 2 ) --> dom  I  /\  P :
( 0 ... 2
) --> V  /\  A. k  e.  { 0 ,  1 }DECID  ( P `
 k )  =  ( P `  (
k  +  1 ) ) )  /\  (
( I `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( I `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } ) ) )  ->  F : ( 0..^ 2 ) --> dom  I )
40 2nn0 9394 . . . . . 6  |-  2  e.  NN0
41 iswrdinn0 11084 . . . . . 6  |-  ( ( F : ( 0..^ 2 ) --> dom  I  /\  2  e.  NN0 )  ->  F  e. Word  dom  I )
4239, 40, 41sylancl 413 . . . . 5  |-  ( ( G  e. UPGraph  /\  (
( F : ( 0..^ 2 ) --> dom  I  /\  P :
( 0 ... 2
) --> V  /\  A. k  e.  { 0 ,  1 }DECID  ( P `
 k )  =  ( P `  (
k  +  1 ) ) )  /\  (
( I `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( I `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } ) ) )  ->  F  e. Word  dom  I )
43 simprl2 1067 . . . . . 6  |-  ( ( G  e. UPGraph  /\  (
( F : ( 0..^ 2 ) --> dom  I  /\  P :
( 0 ... 2
) --> V  /\  A. k  e.  { 0 ,  1 }DECID  ( P `
 k )  =  ( P `  (
k  +  1 ) ) )  /\  (
( I `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( I `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } ) ) )  ->  P : ( 0 ... 2 ) --> V )
44 fnfzo0hash 11065 . . . . . . . . 9  |-  ( ( 2  e.  NN0  /\  F : ( 0..^ 2 ) --> dom  I )  ->  ( `  F )  =  2 )
4540, 39, 44sylancr 414 . . . . . . . 8  |-  ( ( G  e. UPGraph  /\  (
( F : ( 0..^ 2 ) --> dom  I  /\  P :
( 0 ... 2
) --> V  /\  A. k  e.  { 0 ,  1 }DECID  ( P `
 k )  =  ( P `  (
k  +  1 ) ) )  /\  (
( I `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( I `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } ) ) )  ->  ( `  F )  =  2 )
4645oveq2d 6023 . . . . . . 7  |-  ( ( G  e. UPGraph  /\  (
( F : ( 0..^ 2 ) --> dom  I  /\  P :
( 0 ... 2
) --> V  /\  A. k  e.  { 0 ,  1 }DECID  ( P `
 k )  =  ( P `  (
k  +  1 ) ) )  /\  (
( I `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( I `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } ) ) )  ->  (
0 ... ( `  F
) )  =  ( 0 ... 2 ) )
4746feq2d 5461 . . . . . 6  |-  ( ( G  e. UPGraph  /\  (
( F : ( 0..^ 2 ) --> dom  I  /\  P :
( 0 ... 2
) --> V  /\  A. k  e.  { 0 ,  1 }DECID  ( P `
 k )  =  ( P `  (
k  +  1 ) ) )  /\  (
( I `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( I `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } ) ) )  ->  ( P : ( 0 ... ( `  F )
) --> V  <->  P :
( 0 ... 2
) --> V ) )
4843, 47mpbird 167 . . . . 5  |-  ( ( G  e. UPGraph  /\  (
( F : ( 0..^ 2 ) --> dom  I  /\  P :
( 0 ... 2
) --> V  /\  A. k  e.  { 0 ,  1 }DECID  ( P `
 k )  =  ( P `  (
k  +  1 ) ) )  /\  (
( I `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( I `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } ) ) )  ->  P : ( 0 ... ( `  F )
) --> V )
49 simprl3 1068 . . . . . . . 8  |-  ( ( G  e. UPGraph  /\  (
( F : ( 0..^ 2 ) --> dom  I  /\  P :
( 0 ... 2
) --> V  /\  A. k  e.  { 0 ,  1 }DECID  ( P `
 k )  =  ( P `  (
k  +  1 ) ) )  /\  (
( I `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( I `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } ) ) )  ->  A. k  e.  { 0 ,  1 }DECID  ( P `  k
)  =  ( P `
 ( k  +  1 ) ) )
5045, 27syl 14 . . . . . . . 8  |-  ( ( G  e. UPGraph  /\  (
( F : ( 0..^ 2 ) --> dom  I  /\  P :
( 0 ... 2
) --> V  /\  A. k  e.  { 0 ,  1 }DECID  ( P `
 k )  =  ( P `  (
k  +  1 ) ) )  /\  (
( I `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( I `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } ) ) )  ->  (
0..^ ( `  F )
)  =  { 0 ,  1 } )
5149, 50raleqtrrdv 2738 . . . . . . 7  |-  ( ( G  e. UPGraph  /\  (
( F : ( 0..^ 2 ) --> dom  I  /\  P :
( 0 ... 2
) --> V  /\  A. k  e.  { 0 ,  1 }DECID  ( P `
 k )  =  ( P `  (
k  +  1 ) ) )  /\  (
( I `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( I `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } ) ) )  ->  A. k  e.  ( 0..^ ( `  F
) )DECID  ( P `  k
)  =  ( P `
 ( k  +  1 ) ) )
52 simprr 531 . . . . . . . . 9  |-  ( ( G  e. UPGraph  /\  (
( F : ( 0..^ 2 ) --> dom  I  /\  P :
( 0 ... 2
) --> V  /\  A. k  e.  { 0 ,  1 }DECID  ( P `
 k )  =  ( P `  (
k  +  1 ) ) )  /\  (
( I `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( I `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } ) ) )  ->  (
( I `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( I `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } ) )
5352, 35sylibr 134 . . . . . . . 8  |-  ( ( G  e. UPGraph  /\  (
( F : ( 0..^ 2 ) --> dom  I  /\  P :
( 0 ... 2
) --> V  /\  A. k  e.  { 0 ,  1 }DECID  ( P `
 k )  =  ( P `  (
k  +  1 ) ) )  /\  (
( I `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( I `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } ) ) )  ->  A. k  e.  { 0 ,  1 }  ( I `  ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )
5453, 50raleqtrrdv 2738 . . . . . . 7  |-  ( ( G  e. UPGraph  /\  (
( F : ( 0..^ 2 ) --> dom  I  /\  P :
( 0 ... 2
) --> V  /\  A. k  e.  { 0 ,  1 }DECID  ( P `
 k )  =  ( P `  (
k  +  1 ) ) )  /\  (
( I `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( I `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } ) ) )  ->  A. k  e.  ( 0..^ ( `  F
) ) ( I `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )
5551, 54jca 306 . . . . . 6  |-  ( ( G  e. UPGraph  /\  (
( F : ( 0..^ 2 ) --> dom  I  /\  P :
( 0 ... 2
) --> V  /\  A. k  e.  { 0 ,  1 }DECID  ( P `
 k )  =  ( P `  (
k  +  1 ) ) )  /\  (
( I `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( I `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } ) ) )  ->  ( A. k  e.  (
0..^ ( `  F )
)DECID  ( P `  k
)  =  ( P `
 ( k  +  1 ) )  /\  A. k  e.  ( 0..^ ( `  F )
) ( I `  ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) )
56 r19.26 2657 . . . . . 6  |-  ( A. k  e.  ( 0..^ ( `  F )
) (DECID  ( P `  k
)  =  ( P `
 ( k  +  1 ) )  /\  ( I `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  <-> 
( A. k  e.  ( 0..^ ( `  F
) )DECID  ( P `  k
)  =  ( P `
 ( k  +  1 ) )  /\  A. k  e.  ( 0..^ ( `  F )
) ( I `  ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) )
5755, 56sylibr 134 . . . . 5  |-  ( ( G  e. UPGraph  /\  (
( F : ( 0..^ 2 ) --> dom  I  /\  P :
( 0 ... 2
) --> V  /\  A. k  e.  { 0 ,  1 }DECID  ( P `
 k )  =  ( P `  (
k  +  1 ) ) )  /\  (
( I `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( I `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } ) ) )  ->  A. k  e.  ( 0..^ ( `  F
) ) (DECID  ( P `
 k )  =  ( P `  (
k  +  1 ) )  /\  ( I `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) )
5842, 48, 573jca 1201 . . . 4  |-  ( ( G  e. UPGraph  /\  (
( F : ( 0..^ 2 ) --> dom  I  /\  P :
( 0 ... 2
) --> V  /\  A. k  e.  { 0 ,  1 }DECID  ( P `
 k )  =  ( P `  (
k  +  1 ) ) )  /\  (
( I `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( I `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } ) ) )  ->  ( F  e. Word  dom  I  /\  P : ( 0 ... ( `  F )
) --> V  /\  A. k  e.  ( 0..^ ( `  F )
) (DECID  ( P `  k
)  =  ( P `
 ( k  +  1 ) )  /\  ( I `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) )
594adantr 276 . . . 4  |-  ( ( G  e. UPGraph  /\  (
( F : ( 0..^ 2 ) --> dom  I  /\  P :
( 0 ... 2
) --> V  /\  A. k  e.  { 0 ,  1 }DECID  ( P `
 k )  =  ( P `  (
k  +  1 ) ) )  /\  (
( I `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( I `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } ) ) )  ->  ( F (Walks `  G ) P 
<->  ( F  e. Word  dom  I  /\  P : ( 0 ... ( `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( `  F )
) (DECID  ( P `  k
)  =  ( P `
 ( k  +  1 ) )  /\  ( I `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } ) ) ) )
6058, 59mpbird 167 . . 3  |-  ( ( G  e. UPGraph  /\  (
( F : ( 0..^ 2 ) --> dom  I  /\  P :
( 0 ... 2
) --> V  /\  A. k  e.  { 0 ,  1 }DECID  ( P `
 k )  =  ( P `  (
k  +  1 ) ) )  /\  (
( I `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( I `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } ) ) )  ->  F
(Walks `  G ) P )
61 0z 9465 . . . . . . . . 9  |-  0  e.  ZZ
62 2z 9482 . . . . . . . . 9  |-  2  e.  ZZ
63 fzofig 10662 . . . . . . . . 9  |-  ( ( 0  e.  ZZ  /\  2  e.  ZZ )  ->  ( 0..^ 2 )  e.  Fin )
6461, 62, 63mp2an 426 . . . . . . . 8  |-  ( 0..^ 2 )  e.  Fin
65 fex 5872 . . . . . . . 8  |-  ( ( F : ( 0..^ 2 ) --> dom  I  /\  ( 0..^ 2 )  e.  Fin )  ->  F  e.  _V )
6664, 65mpan2 425 . . . . . . 7  |-  ( F : ( 0..^ 2 ) --> dom  I  ->  F  e.  _V )
67 ffun 5476 . . . . . . 7  |-  ( F : ( 0..^ 2 ) --> dom  I  ->  Fun 
F )
68 fundmeng 6968 . . . . . . 7  |-  ( ( F  e.  _V  /\  Fun  F )  ->  dom  F 
~~  F )
6966, 67, 68syl2anc 411 . . . . . 6  |-  ( F : ( 0..^ 2 ) --> dom  I  ->  dom 
F  ~~  F )
7069ensymd 6943 . . . . 5  |-  ( F : ( 0..^ 2 ) --> dom  I  ->  F 
~~  dom  F )
71 fdm 5479 . . . . . . 7  |-  ( F : ( 0..^ 2 ) --> dom  I  ->  dom 
F  =  ( 0..^ 2 ) )
7271, 26eqtrdi 2278 . . . . . 6  |-  ( F : ( 0..^ 2 ) --> dom  I  ->  dom 
F  =  { 0 ,  1 } )
73 1z 9480 . . . . . . 7  |-  1  e.  ZZ
74 0ne1 9185 . . . . . . 7  |-  0  =/=  1
75 pr2nelem 7372 . . . . . . 7  |-  ( ( 0  e.  ZZ  /\  1  e.  ZZ  /\  0  =/=  1 )  ->  { 0 ,  1 }  ~~  2o )
7661, 73, 74, 75mp3an 1371 . . . . . 6  |-  { 0 ,  1 }  ~~  2o
7772, 76eqbrtrdi 4122 . . . . 5  |-  ( F : ( 0..^ 2 ) --> dom  I  ->  dom 
F  ~~  2o )
78 entr 6944 . . . . 5  |-  ( ( F  ~~  dom  F  /\  dom  F  ~~  2o )  ->  F  ~~  2o )
7970, 77, 78syl2anc 411 . . . 4  |-  ( F : ( 0..^ 2 ) --> dom  I  ->  F 
~~  2o )
8039, 79syl 14 . . 3  |-  ( ( G  e. UPGraph  /\  (
( F : ( 0..^ 2 ) --> dom  I  /\  P :
( 0 ... 2
) --> V  /\  A. k  e.  { 0 ,  1 }DECID  ( P `
 k )  =  ( P `  (
k  +  1 ) ) )  /\  (
( I `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( I `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } ) ) )  ->  F  ~~  2o )
8160, 80jca 306 . 2  |-  ( ( G  e. UPGraph  /\  (
( F : ( 0..^ 2 ) --> dom  I  /\  P :
( 0 ... 2
) --> V  /\  A. k  e.  { 0 ,  1 }DECID  ( P `
 k )  =  ( P `  (
k  +  1 ) ) )  /\  (
( I `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( I `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } ) ) )  ->  ( F (Walks `  G ) P  /\  F  ~~  2o ) )
8238, 81impbida 598 1  |-  ( G  e. UPGraph  ->  ( ( F (Walks `  G ) P  /\  F  ~~  2o ) 
<->  ( ( F :
( 0..^ 2 ) --> dom  I  /\  P : ( 0 ... 2 ) --> V  /\  A. k  e.  { 0 ,  1 }DECID  ( P `
 k )  =  ( P `  (
k  +  1 ) ) )  /\  (
( I `  ( F `  0 )
)  =  { ( P `  0 ) ,  ( P ` 
1 ) }  /\  ( I `  ( F `  1 )
)  =  { ( P `  1 ) ,  ( P ` 
2 ) } ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 839    /\ w3a 1002    = wceq 1395    e. wcel 2200    =/= wne 2400   A.wral 2508   _Vcvv 2799   {cpr 3667   class class class wbr 4083   dom cdm 4719   Fun wfun 5312   -->wf 5314   ` cfv 5318  (class class class)co 6007   2oc2o 6562    ~~ cen 6893   Fincfn 6895   0cc0 8007   1c1 8008    + caddc 8010   2c2 9169   NN0cn0 9377   ZZcz 9454   ...cfz 10212  ..^cfzo 10346  ♯chash 11005  Word cword 11079  Vtxcvtx 15821  iEdgciedg 15822  UPGraphcupgr 15899  Walkscwlks 16038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-dc 840  df-ifp 984  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-frec 6543  df-1o 6568  df-2o 6569  df-oadd 6572  df-er 6688  df-map 6805  df-en 6896  df-dom 6897  df-fin 6898  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-z 9455  df-dec 9587  df-uz 9731  df-fz 10213  df-fzo 10347  df-ihash 11006  df-word 11080  df-ndx 13043  df-slot 13044  df-base 13046  df-edgf 15814  df-vtx 15823  df-iedg 15824  df-edg 15867  df-uhgrm 15877  df-upgren 15901  df-wlks 16039
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator