ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  islss4 Unicode version

Theorem islss4 14346
Description: A linear subspace is a subgroup which respects scalar multiplication. (Contributed by Stefan O'Rear, 11-Dec-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
islss4.f  |-  F  =  (Scalar `  W )
islss4.b  |-  B  =  ( Base `  F
)
islss4.v  |-  V  =  ( Base `  W
)
islss4.t  |-  .x.  =  ( .s `  W )
islss4.s  |-  S  =  ( LSubSp `  W )
Assertion
Ref Expression
islss4  |-  ( W  e.  LMod  ->  ( U  e.  S  <->  ( U  e.  (SubGrp `  W )  /\  A. a  e.  B  A. b  e.  U  ( a  .x.  b
)  e.  U ) ) )
Distinct variable groups:    F, a, b    W, a, b    B, a, b    V, a, b    .x. , a,
b    S, a, b    U, a, b

Proof of Theorem islss4
Dummy variables  c  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 islss4.s . . . 4  |-  S  =  ( LSubSp `  W )
21lsssubg 14341 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  U  e.  (SubGrp `  W )
)
3 islss4.f . . . . 5  |-  F  =  (Scalar `  W )
4 islss4.t . . . . 5  |-  .x.  =  ( .s `  W )
5 islss4.b . . . . 5  |-  B  =  ( Base `  F
)
63, 4, 5, 1lssvscl 14339 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  S )  /\  ( a  e.  B  /\  b  e.  U ) )  -> 
( a  .x.  b
)  e.  U )
76ralrimivva 2612 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  A. a  e.  B  A. b  e.  U  ( a  .x.  b )  e.  U
)
82, 7jca 306 . 2  |-  ( ( W  e.  LMod  /\  U  e.  S )  ->  ( U  e.  (SubGrp `  W
)  /\  A. a  e.  B  A. b  e.  U  ( a  .x.  b )  e.  U
) )
9 islss4.v . . . . 5  |-  V  =  ( Base `  W
)
109subgss 13711 . . . 4  |-  ( U  e.  (SubGrp `  W
)  ->  U  C_  V
)
1110ad2antrl 490 . . 3  |-  ( ( W  e.  LMod  /\  ( U  e.  (SubGrp `  W
)  /\  A. a  e.  B  A. b  e.  U  ( a  .x.  b )  e.  U
) )  ->  U  C_  V )
12 eqid 2229 . . . . . 6  |-  ( 0g
`  W )  =  ( 0g `  W
)
1312subg0cl 13719 . . . . 5  |-  ( U  e.  (SubGrp `  W
)  ->  ( 0g `  W )  e.  U
)
14 elex2 2816 . . . . 5  |-  ( ( 0g `  W )  e.  U  ->  E. j 
j  e.  U )
1513, 14syl 14 . . . 4  |-  ( U  e.  (SubGrp `  W
)  ->  E. j 
j  e.  U )
1615ad2antrl 490 . . 3  |-  ( ( W  e.  LMod  /\  ( U  e.  (SubGrp `  W
)  /\  A. a  e.  B  A. b  e.  U  ( a  .x.  b )  e.  U
) )  ->  E. j 
j  e.  U )
17 eqid 2229 . . . . . . . . . 10  |-  ( +g  `  W )  =  ( +g  `  W )
1817subgcl 13721 . . . . . . . . 9  |-  ( ( U  e.  (SubGrp `  W )  /\  (
a  .x.  b )  e.  U  /\  c  e.  U )  ->  (
( a  .x.  b
) ( +g  `  W
) c )  e.  U )
19183exp 1226 . . . . . . . 8  |-  ( U  e.  (SubGrp `  W
)  ->  ( (
a  .x.  b )  e.  U  ->  ( c  e.  U  ->  (
( a  .x.  b
) ( +g  `  W
) c )  e.  U ) ) )
2019adantl 277 . . . . . . 7  |-  ( ( W  e.  LMod  /\  U  e.  (SubGrp `  W )
)  ->  ( (
a  .x.  b )  e.  U  ->  ( c  e.  U  ->  (
( a  .x.  b
) ( +g  `  W
) c )  e.  U ) ) )
2120ralrimdv 2609 . . . . . 6  |-  ( ( W  e.  LMod  /\  U  e.  (SubGrp `  W )
)  ->  ( (
a  .x.  b )  e.  U  ->  A. c  e.  U  ( (
a  .x.  b )
( +g  `  W ) c )  e.  U
) )
2221ralimdv 2598 . . . . 5  |-  ( ( W  e.  LMod  /\  U  e.  (SubGrp `  W )
)  ->  ( A. b  e.  U  (
a  .x.  b )  e.  U  ->  A. b  e.  U  A. c  e.  U  ( (
a  .x.  b )
( +g  `  W ) c )  e.  U
) )
2322ralimdv 2598 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  (SubGrp `  W )
)  ->  ( A. a  e.  B  A. b  e.  U  (
a  .x.  b )  e.  U  ->  A. a  e.  B  A. b  e.  U  A. c  e.  U  ( (
a  .x.  b )
( +g  `  W ) c )  e.  U
) )
2423impr 379 . . 3  |-  ( ( W  e.  LMod  /\  ( U  e.  (SubGrp `  W
)  /\  A. a  e.  B  A. b  e.  U  ( a  .x.  b )  e.  U
) )  ->  A. a  e.  B  A. b  e.  U  A. c  e.  U  ( (
a  .x.  b )
( +g  `  W ) c )  e.  U
)
253, 5, 9, 17, 4, 1islssmg 14322 . . . 4  |-  ( W  e.  LMod  ->  ( U  e.  S  <->  ( U  C_  V  /\  E. j 
j  e.  U  /\  A. a  e.  B  A. b  e.  U  A. c  e.  U  (
( a  .x.  b
) ( +g  `  W
) c )  e.  U ) ) )
2625adantr 276 . . 3  |-  ( ( W  e.  LMod  /\  ( U  e.  (SubGrp `  W
)  /\  A. a  e.  B  A. b  e.  U  ( a  .x.  b )  e.  U
) )  ->  ( U  e.  S  <->  ( U  C_  V  /\  E. j 
j  e.  U  /\  A. a  e.  B  A. b  e.  U  A. c  e.  U  (
( a  .x.  b
) ( +g  `  W
) c )  e.  U ) ) )
2711, 16, 24, 26mpbir3and 1204 . 2  |-  ( ( W  e.  LMod  /\  ( U  e.  (SubGrp `  W
)  /\  A. a  e.  B  A. b  e.  U  ( a  .x.  b )  e.  U
) )  ->  U  e.  S )
288, 27impbida 598 1  |-  ( W  e.  LMod  ->  ( U  e.  S  <->  ( U  e.  (SubGrp `  W )  /\  A. a  e.  B  A. b  e.  U  ( a  .x.  b
)  e.  U ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395   E.wex 1538    e. wcel 2200   A.wral 2508    C_ wss 3197   ` cfv 5318  (class class class)co 6001   Basecbs 13032   +g cplusg 13110  Scalarcsca 13113   .scvsca 13114   0gc0g 13289  SubGrpcsubg 13704   LModclmod 14251   LSubSpclss 14316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-iress 13040  df-plusg 13123  df-mulr 13124  df-sca 13126  df-vsca 13127  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-grp 13536  df-minusg 13537  df-sbg 13538  df-subg 13707  df-mgp 13884  df-ur 13923  df-ring 13961  df-lmod 14253  df-lssm 14317
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator