ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topbas Unicode version

Theorem topbas 14654
Description: A topology is its own basis. (Contributed by NM, 17-Jul-2006.)
Assertion
Ref Expression
topbas  |-  ( J  e.  Top  ->  J  e. 
TopBases )

Proof of Theorem topbas
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inopn 14590 . . . . . . 7  |-  ( ( J  e.  Top  /\  x  e.  J  /\  y  e.  J )  ->  ( x  i^i  y
)  e.  J )
213expb 1207 . . . . . 6  |-  ( ( J  e.  Top  /\  ( x  e.  J  /\  y  e.  J
) )  ->  (
x  i^i  y )  e.  J )
3 simpr 110 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  ( x  e.  J  /\  y  e.  J
) )  /\  z  e.  ( x  i^i  y
) )  ->  z  e.  ( x  i^i  y
) )
4 ssid 3221 . . . . . . 7  |-  ( x  i^i  y )  C_  ( x  i^i  y
)
53, 4jctir 313 . . . . . 6  |-  ( ( ( J  e.  Top  /\  ( x  e.  J  /\  y  e.  J
) )  /\  z  e.  ( x  i^i  y
) )  ->  (
z  e.  ( x  i^i  y )  /\  ( x  i^i  y
)  C_  ( x  i^i  y ) ) )
6 eleq2 2271 . . . . . . . 8  |-  ( w  =  ( x  i^i  y )  ->  (
z  e.  w  <->  z  e.  ( x  i^i  y
) ) )
7 sseq1 3224 . . . . . . . 8  |-  ( w  =  ( x  i^i  y )  ->  (
w  C_  ( x  i^i  y )  <->  ( x  i^i  y )  C_  (
x  i^i  y )
) )
86, 7anbi12d 473 . . . . . . 7  |-  ( w  =  ( x  i^i  y )  ->  (
( z  e.  w  /\  w  C_  ( x  i^i  y ) )  <-> 
( z  e.  ( x  i^i  y )  /\  ( x  i^i  y )  C_  (
x  i^i  y )
) ) )
98rspcev 2884 . . . . . 6  |-  ( ( ( x  i^i  y
)  e.  J  /\  ( z  e.  ( x  i^i  y )  /\  ( x  i^i  y )  C_  (
x  i^i  y )
) )  ->  E. w  e.  J  ( z  e.  w  /\  w  C_  ( x  i^i  y
) ) )
102, 5, 9syl2an2r 595 . . . . 5  |-  ( ( ( J  e.  Top  /\  ( x  e.  J  /\  y  e.  J
) )  /\  z  e.  ( x  i^i  y
) )  ->  E. w  e.  J  ( z  e.  w  /\  w  C_  ( x  i^i  y
) ) )
1110exp31 364 . . . 4  |-  ( J  e.  Top  ->  (
( x  e.  J  /\  y  e.  J
)  ->  ( z  e.  ( x  i^i  y
)  ->  E. w  e.  J  ( z  e.  w  /\  w  C_  ( x  i^i  y
) ) ) ) )
1211ralrimdv 2587 . . 3  |-  ( J  e.  Top  ->  (
( x  e.  J  /\  y  e.  J
)  ->  A. z  e.  ( x  i^i  y
) E. w  e.  J  ( z  e.  w  /\  w  C_  ( x  i^i  y
) ) ) )
1312ralrimivv 2589 . 2  |-  ( J  e.  Top  ->  A. x  e.  J  A. y  e.  J  A. z  e.  ( x  i^i  y
) E. w  e.  J  ( z  e.  w  /\  w  C_  ( x  i^i  y
) ) )
14 isbasis2g 14632 . 2  |-  ( J  e.  Top  ->  ( J  e.  TopBases  <->  A. x  e.  J  A. y  e.  J  A. z  e.  (
x  i^i  y ) E. w  e.  J  ( z  e.  w  /\  w  C_  ( x  i^i  y ) ) ) )
1513, 14mpbird 167 1  |-  ( J  e.  Top  ->  J  e. 
TopBases )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   A.wral 2486   E.wrex 2487    i^i cin 3173    C_ wss 3174   Topctop 14584   TopBasesctb 14629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-sep 4178
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-in 3180  df-ss 3187  df-pw 3628  df-uni 3865  df-top 14585  df-bases 14630
This theorem is referenced by:  resttop  14757  txtop  14847
  Copyright terms: Public domain W3C validator