ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  topbas Unicode version

Theorem topbas 14741
Description: A topology is its own basis. (Contributed by NM, 17-Jul-2006.)
Assertion
Ref Expression
topbas  |-  ( J  e.  Top  ->  J  e. 
TopBases )

Proof of Theorem topbas
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inopn 14677 . . . . . . 7  |-  ( ( J  e.  Top  /\  x  e.  J  /\  y  e.  J )  ->  ( x  i^i  y
)  e.  J )
213expb 1228 . . . . . 6  |-  ( ( J  e.  Top  /\  ( x  e.  J  /\  y  e.  J
) )  ->  (
x  i^i  y )  e.  J )
3 simpr 110 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  ( x  e.  J  /\  y  e.  J
) )  /\  z  e.  ( x  i^i  y
) )  ->  z  e.  ( x  i^i  y
) )
4 ssid 3244 . . . . . . 7  |-  ( x  i^i  y )  C_  ( x  i^i  y
)
53, 4jctir 313 . . . . . 6  |-  ( ( ( J  e.  Top  /\  ( x  e.  J  /\  y  e.  J
) )  /\  z  e.  ( x  i^i  y
) )  ->  (
z  e.  ( x  i^i  y )  /\  ( x  i^i  y
)  C_  ( x  i^i  y ) ) )
6 eleq2 2293 . . . . . . . 8  |-  ( w  =  ( x  i^i  y )  ->  (
z  e.  w  <->  z  e.  ( x  i^i  y
) ) )
7 sseq1 3247 . . . . . . . 8  |-  ( w  =  ( x  i^i  y )  ->  (
w  C_  ( x  i^i  y )  <->  ( x  i^i  y )  C_  (
x  i^i  y )
) )
86, 7anbi12d 473 . . . . . . 7  |-  ( w  =  ( x  i^i  y )  ->  (
( z  e.  w  /\  w  C_  ( x  i^i  y ) )  <-> 
( z  e.  ( x  i^i  y )  /\  ( x  i^i  y )  C_  (
x  i^i  y )
) ) )
98rspcev 2907 . . . . . 6  |-  ( ( ( x  i^i  y
)  e.  J  /\  ( z  e.  ( x  i^i  y )  /\  ( x  i^i  y )  C_  (
x  i^i  y )
) )  ->  E. w  e.  J  ( z  e.  w  /\  w  C_  ( x  i^i  y
) ) )
102, 5, 9syl2an2r 597 . . . . 5  |-  ( ( ( J  e.  Top  /\  ( x  e.  J  /\  y  e.  J
) )  /\  z  e.  ( x  i^i  y
) )  ->  E. w  e.  J  ( z  e.  w  /\  w  C_  ( x  i^i  y
) ) )
1110exp31 364 . . . 4  |-  ( J  e.  Top  ->  (
( x  e.  J  /\  y  e.  J
)  ->  ( z  e.  ( x  i^i  y
)  ->  E. w  e.  J  ( z  e.  w  /\  w  C_  ( x  i^i  y
) ) ) ) )
1211ralrimdv 2609 . . 3  |-  ( J  e.  Top  ->  (
( x  e.  J  /\  y  e.  J
)  ->  A. z  e.  ( x  i^i  y
) E. w  e.  J  ( z  e.  w  /\  w  C_  ( x  i^i  y
) ) ) )
1312ralrimivv 2611 . 2  |-  ( J  e.  Top  ->  A. x  e.  J  A. y  e.  J  A. z  e.  ( x  i^i  y
) E. w  e.  J  ( z  e.  w  /\  w  C_  ( x  i^i  y
) ) )
14 isbasis2g 14719 . 2  |-  ( J  e.  Top  ->  ( J  e.  TopBases  <->  A. x  e.  J  A. y  e.  J  A. z  e.  (
x  i^i  y ) E. w  e.  J  ( z  e.  w  /\  w  C_  ( x  i^i  y ) ) ) )
1513, 14mpbird 167 1  |-  ( J  e.  Top  ->  J  e. 
TopBases )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509    i^i cin 3196    C_ wss 3197   Topctop 14671   TopBasesctb 14716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-sep 4202
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-in 3203  df-ss 3210  df-pw 3651  df-uni 3889  df-top 14672  df-bases 14717
This theorem is referenced by:  resttop  14844  txtop  14934
  Copyright terms: Public domain W3C validator