ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrimivv Unicode version

Theorem ralrimivv 2611
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 24-Jul-2004.)
Hypothesis
Ref Expression
ralrimivv.1  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  B )  ->  ps ) )
Assertion
Ref Expression
ralrimivv  |-  ( ph  ->  A. x  e.  A  A. y  e.  B  ps )
Distinct variable groups:    x, y, ph    y, A
Allowed substitution hints:    ps( x, y)    A( x)    B( x, y)

Proof of Theorem ralrimivv
StepHypRef Expression
1 ralrimivv.1 . . . 4  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  B )  ->  ps ) )
21expd 258 . . 3  |-  ( ph  ->  ( x  e.  A  ->  ( y  e.  B  ->  ps ) ) )
32ralrimdv 2609 . 2  |-  ( ph  ->  ( x  e.  A  ->  A. y  e.  B  ps ) )
43ralrimiv 2602 1  |-  ( ph  ->  A. x  e.  A  A. y  e.  B  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2200   A.wral 2508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-4 1556  ax-17 1572
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-ral 2513
This theorem is referenced by:  ralrimivva  2612  ralrimdvv  2614  reuind  3008  ssrel2  4809  f1o2ndf1  6374  smoiso  6448  nndifsnid  6653  receuap  8816  lbreu  9092  0subm  13517  insubm  13518  iscmnd  13835  quscrng  14497  tgcl  14738  topbas  14741  epttop  14764  restbasg  14842  txbas  14932  txbasval  14941  blfps  15083  blf  15084  blbas  15107
  Copyright terms: Public domain W3C validator