ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrimivv Unicode version

Theorem ralrimivv 2538
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 24-Jul-2004.)
Hypothesis
Ref Expression
ralrimivv.1  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  B )  ->  ps ) )
Assertion
Ref Expression
ralrimivv  |-  ( ph  ->  A. x  e.  A  A. y  e.  B  ps )
Distinct variable groups:    x, y, ph    y, A
Allowed substitution hints:    ps( x, y)    A( x)    B( x, y)

Proof of Theorem ralrimivv
StepHypRef Expression
1 ralrimivv.1 . . . 4  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  B )  ->  ps ) )
21expd 256 . . 3  |-  ( ph  ->  ( x  e.  A  ->  ( y  e.  B  ->  ps ) ) )
32ralrimdv 2536 . 2  |-  ( ph  ->  ( x  e.  A  ->  A. y  e.  B  ps ) )
43ralrimiv 2529 1  |-  ( ph  ->  A. x  e.  A  A. y  e.  B  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2128   A.wral 2435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-gen 1429  ax-4 1490  ax-17 1506
This theorem depends on definitions:  df-bi 116  df-nf 1441  df-ral 2440
This theorem is referenced by:  ralrimivva  2539  ralrimdvv  2541  reuind  2917  ssrel2  4675  f1o2ndf1  6172  smoiso  6246  nndifsnid  6451  receuap  8537  lbreu  8810  tgcl  12435  topbas  12438  epttop  12461  restbasg  12539  txbas  12629  txbasval  12638  blfps  12780  blf  12781  blbas  12804
  Copyright terms: Public domain W3C validator