ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrimivv Unicode version

Theorem ralrimivv 2551
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 24-Jul-2004.)
Hypothesis
Ref Expression
ralrimivv.1  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  B )  ->  ps ) )
Assertion
Ref Expression
ralrimivv  |-  ( ph  ->  A. x  e.  A  A. y  e.  B  ps )
Distinct variable groups:    x, y, ph    y, A
Allowed substitution hints:    ps( x, y)    A( x)    B( x, y)

Proof of Theorem ralrimivv
StepHypRef Expression
1 ralrimivv.1 . . . 4  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  B )  ->  ps ) )
21expd 256 . . 3  |-  ( ph  ->  ( x  e.  A  ->  ( y  e.  B  ->  ps ) ) )
32ralrimdv 2549 . 2  |-  ( ph  ->  ( x  e.  A  ->  A. y  e.  B  ps ) )
43ralrimiv 2542 1  |-  ( ph  ->  A. x  e.  A  A. y  e.  B  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2141   A.wral 2448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-4 1503  ax-17 1519
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-ral 2453
This theorem is referenced by:  ralrimivva  2552  ralrimdvv  2554  reuind  2935  ssrel2  4701  f1o2ndf1  6207  smoiso  6281  nndifsnid  6486  receuap  8587  lbreu  8861  0subm  12702  insubm  12703  tgcl  12858  topbas  12861  epttop  12884  restbasg  12962  txbas  13052  txbasval  13061  blfps  13203  blf  13204  blbas  13227
  Copyright terms: Public domain W3C validator