Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > metcnp3 | Unicode version |
Description: Two ways to express that is continuous at for metric spaces. Proposition 14-4.2 of [Gleason] p. 240. (Contributed by NM, 17-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
metcn.2 | |
metcn.4 |
Ref | Expression |
---|---|
metcnp3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metcn.2 | . . . . 5 | |
2 | 1 | mopntopon 13083 | . . . 4 TopOn |
3 | 2 | 3ad2ant1 1008 | . . 3 TopOn |
4 | metcn.4 | . . . . 5 | |
5 | 4 | mopnval 13082 | . . . 4 |
6 | 5 | 3ad2ant2 1009 | . . 3 |
7 | 4 | mopntopon 13083 | . . . 4 TopOn |
8 | 7 | 3ad2ant2 1009 | . . 3 TopOn |
9 | simp3 989 | . . 3 | |
10 | 3, 6, 8, 9 | tgcnp 12849 | . 2 |
11 | simpll2 1027 | . . . . . . . 8 | |
12 | simplr 520 | . . . . . . . . 9 | |
13 | simpll3 1028 | . . . . . . . . 9 | |
14 | 12, 13 | ffvelrnd 5621 | . . . . . . . 8 |
15 | simpr 109 | . . . . . . . 8 | |
16 | blcntr 13056 | . . . . . . . 8 | |
17 | 11, 14, 15, 16 | syl3anc 1228 | . . . . . . 7 |
18 | rpxr 9597 | . . . . . . . . . 10 | |
19 | 18 | adantl 275 | . . . . . . . . 9 |
20 | blelrn 13060 | . . . . . . . . 9 | |
21 | 11, 14, 19, 20 | syl3anc 1228 | . . . . . . . 8 |
22 | eleq2 2230 | . . . . . . . . . 10 | |
23 | sseq2 3166 | . . . . . . . . . . . 12 | |
24 | 23 | anbi2d 460 | . . . . . . . . . . 11 |
25 | 24 | rexbidv 2467 | . . . . . . . . . 10 |
26 | 22, 25 | imbi12d 233 | . . . . . . . . 9 |
27 | 26 | rspcv 2826 | . . . . . . . 8 |
28 | 21, 27 | syl 14 | . . . . . . 7 |
29 | 17, 28 | mpid 42 | . . . . . 6 |
30 | simpl1 990 | . . . . . . . . . . . 12 | |
31 | 30 | ad2antrr 480 | . . . . . . . . . . 11 |
32 | simplrr 526 | . . . . . . . . . . 11 | |
33 | simpr 109 | . . . . . . . . . . 11 | |
34 | 1 | mopni2 13123 | . . . . . . . . . . 11 |
35 | 31, 32, 33, 34 | syl3anc 1228 | . . . . . . . . . 10 |
36 | sstr2 3149 | . . . . . . . . . . . 12 | |
37 | imass2 4980 | . . . . . . . . . . . 12 | |
38 | 36, 37 | syl11 31 | . . . . . . . . . . 11 |
39 | 38 | reximdv 2567 | . . . . . . . . . 10 |
40 | 35, 39 | syl5com 29 | . . . . . . . . 9 |
41 | 40 | expimpd 361 | . . . . . . . 8 |
42 | 41 | expr 373 | . . . . . . 7 |
43 | 42 | rexlimdv 2582 | . . . . . 6 |
44 | 29, 43 | syld 45 | . . . . 5 |
45 | 44 | ralrimdva 2546 | . . . 4 |
46 | simpl2 991 | . . . . . . . . 9 | |
47 | blss 13068 | . . . . . . . . . 10 | |
48 | 47 | 3expib 1196 | . . . . . . . . 9 |
49 | 46, 48 | syl 14 | . . . . . . . 8 |
50 | r19.29r 2604 | . . . . . . . . . 10 | |
51 | 30 | ad3antrrr 484 | . . . . . . . . . . . . . . . 16 |
52 | 13 | ad2antrr 480 | . . . . . . . . . . . . . . . 16 |
53 | rpxr 9597 | . . . . . . . . . . . . . . . . 17 | |
54 | 53 | ad2antrl 482 | . . . . . . . . . . . . . . . 16 |
55 | 1 | blopn 13130 | . . . . . . . . . . . . . . . 16 |
56 | 51, 52, 54, 55 | syl3anc 1228 | . . . . . . . . . . . . . . 15 |
57 | simprl 521 | . . . . . . . . . . . . . . . 16 | |
58 | blcntr 13056 | . . . . . . . . . . . . . . . 16 | |
59 | 51, 52, 57, 58 | syl3anc 1228 | . . . . . . . . . . . . . . 15 |
60 | sstr 3150 | . . . . . . . . . . . . . . . . 17 | |
61 | 60 | ad2ant2l 500 | . . . . . . . . . . . . . . . 16 |
62 | 61 | ancoms 266 | . . . . . . . . . . . . . . 15 |
63 | eleq2 2230 | . . . . . . . . . . . . . . . . 17 | |
64 | imaeq2 4942 | . . . . . . . . . . . . . . . . . 18 | |
65 | 64 | sseq1d 3171 | . . . . . . . . . . . . . . . . 17 |
66 | 63, 65 | anbi12d 465 | . . . . . . . . . . . . . . . 16 |
67 | 66 | rspcev 2830 | . . . . . . . . . . . . . . 15 |
68 | 56, 59, 62, 67 | syl12anc 1226 | . . . . . . . . . . . . . 14 |
69 | 68 | expr 373 | . . . . . . . . . . . . 13 |
70 | 69 | rexlimdva 2583 | . . . . . . . . . . . 12 |
71 | 70 | expimpd 361 | . . . . . . . . . . 11 |
72 | 71 | rexlimdva 2583 | . . . . . . . . . 10 |
73 | 50, 72 | syl5 32 | . . . . . . . . 9 |
74 | 73 | expd 256 | . . . . . . . 8 |
75 | 49, 74 | syld 45 | . . . . . . 7 |
76 | 75 | com23 78 | . . . . . 6 |
77 | 76 | exp4a 364 | . . . . 5 |
78 | 77 | ralrimdv 2545 | . . . 4 |
79 | 45, 78 | impbid 128 | . . 3 |
80 | 79 | pm5.32da 448 | . 2 |
81 | 10, 80 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 wral 2444 wrex 2445 wss 3116 crn 4605 cima 4607 wf 5184 cfv 5188 (class class class)co 5842 cxr 7932 crp 9589 ctg 12571 cxmet 12620 cbl 12622 cmopn 12625 TopOnctopon 12648 ccnp 12826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 |
This theorem depends on definitions: df-bi 116 df-stab 821 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-isom 5197 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-map 6616 df-sup 6949 df-inf 6950 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-rp 9590 df-xneg 9708 df-xadd 9709 df-seqfrec 10381 df-exp 10455 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-topgen 12577 df-psmet 12627 df-xmet 12628 df-bl 12630 df-mopn 12631 df-top 12636 df-topon 12649 df-bases 12681 df-cnp 12829 |
This theorem is referenced by: metcnp 13152 |
Copyright terms: Public domain | W3C validator |