ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metcnp3 Unicode version

Theorem metcnp3 13151
Description: Two ways to express that  F is continuous at  P for metric spaces. Proposition 14-4.2 of [Gleason] p. 240. (Contributed by NM, 17-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
metcn.2  |-  J  =  ( MetOpen `  C )
metcn.4  |-  K  =  ( MetOpen `  D )
Assertion
Ref Expression
metcnp3  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y ) ) ) )
Distinct variable groups:    y, z, F   
y, J, z    y, K, z    y, X, z   
y, Y, z    y, C, z    y, D, z   
y, P, z

Proof of Theorem metcnp3
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metcn.2 . . . . 5  |-  J  =  ( MetOpen `  C )
21mopntopon 13083 . . . 4  |-  ( C  e.  ( *Met `  X )  ->  J  e.  (TopOn `  X )
)
323ad2ant1 1008 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  ->  J  e.  (TopOn `  X )
)
4 metcn.4 . . . . 5  |-  K  =  ( MetOpen `  D )
54mopnval 13082 . . . 4  |-  ( D  e.  ( *Met `  Y )  ->  K  =  ( topGen `  ran  ( ball `  D )
) )
653ad2ant2 1009 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  ->  K  =  ( topGen `  ran  ( ball `  D )
) )
74mopntopon 13083 . . . 4  |-  ( D  e.  ( *Met `  Y )  ->  K  e.  (TopOn `  Y )
)
873ad2ant2 1009 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  ->  K  e.  (TopOn `  Y )
)
9 simp3 989 . . 3  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  ->  P  e.  X )
103, 6, 8, 9tgcnp 12849 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X --> Y  /\  A. u  e.  ran  ( ball `  D ) ( ( F `  P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) ) ) ) )
11 simpll2 1027 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  ->  D  e.  ( *Met `  Y ) )
12 simplr 520 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  ->  F : X --> Y )
13 simpll3 1028 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  ->  P  e.  X )
1412, 13ffvelrnd 5621 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
( F `  P
)  e.  Y )
15 simpr 109 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
y  e.  RR+ )
16 blcntr 13056 . . . . . . . 8  |-  ( ( D  e.  ( *Met `  Y )  /\  ( F `  P )  e.  Y  /\  y  e.  RR+ )  ->  ( F `  P
)  e.  ( ( F `  P ) ( ball `  D
) y ) )
1711, 14, 15, 16syl3anc 1228 . . . . . . 7  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
( F `  P
)  e.  ( ( F `  P ) ( ball `  D
) y ) )
18 rpxr 9597 . . . . . . . . . 10  |-  ( y  e.  RR+  ->  y  e. 
RR* )
1918adantl 275 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
y  e.  RR* )
20 blelrn 13060 . . . . . . . . 9  |-  ( ( D  e.  ( *Met `  Y )  /\  ( F `  P )  e.  Y  /\  y  e.  RR* )  ->  ( ( F `  P ) ( ball `  D ) y )  e.  ran  ( ball `  D ) )
2111, 14, 19, 20syl3anc 1228 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
( ( F `  P ) ( ball `  D ) y )  e.  ran  ( ball `  D ) )
22 eleq2 2230 . . . . . . . . . 10  |-  ( u  =  ( ( F `
 P ) (
ball `  D )
y )  ->  (
( F `  P
)  e.  u  <->  ( F `  P )  e.  ( ( F `  P
) ( ball `  D
) y ) ) )
23 sseq2 3166 . . . . . . . . . . . 12  |-  ( u  =  ( ( F `
 P ) (
ball `  D )
y )  ->  (
( F " v
)  C_  u  <->  ( F " v )  C_  (
( F `  P
) ( ball `  D
) y ) ) )
2423anbi2d 460 . . . . . . . . . . 11  |-  ( u  =  ( ( F `
 P ) (
ball `  D )
y )  ->  (
( P  e.  v  /\  ( F "
v )  C_  u
)  <->  ( P  e.  v  /\  ( F
" v )  C_  ( ( F `  P ) ( ball `  D ) y ) ) ) )
2524rexbidv 2467 . . . . . . . . . 10  |-  ( u  =  ( ( F `
 P ) (
ball `  D )
y )  ->  ( E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  u )  <->  E. v  e.  J  ( P  e.  v  /\  ( F " v ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) ) )
2622, 25imbi12d 233 . . . . . . . . 9  |-  ( u  =  ( ( F `
 P ) (
ball `  D )
y )  ->  (
( ( F `  P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  u )
)  <->  ( ( F `
 P )  e.  ( ( F `  P ) ( ball `  D ) y )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  ( ( F `  P )
( ball `  D )
y ) ) ) ) )
2726rspcv 2826 . . . . . . . 8  |-  ( ( ( F `  P
) ( ball `  D
) y )  e. 
ran  ( ball `  D
)  ->  ( A. u  e.  ran  ( ball `  D ) ( ( F `  P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) )  -> 
( ( F `  P )  e.  ( ( F `  P
) ( ball `  D
) y )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  ( ( F `  P )
( ball `  D )
y ) ) ) ) )
2821, 27syl 14 . . . . . . 7  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
( A. u  e. 
ran  ( ball `  D
) ( ( F `
 P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) )  -> 
( ( F `  P )  e.  ( ( F `  P
) ( ball `  D
) y )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  ( ( F `  P )
( ball `  D )
y ) ) ) ) )
2917, 28mpid 42 . . . . . 6  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
( A. u  e. 
ran  ( ball `  D
) ( ( F `
 P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  ( ( F `  P )
( ball `  D )
y ) ) ) )
30 simpl1 990 . . . . . . . . . . . 12  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  ->  C  e.  ( *Met `  X ) )
3130ad2antrr 480 . . . . . . . . . . 11  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  v  e.  J ) )  /\  P  e.  v )  ->  C  e.  ( *Met `  X ) )
32 simplrr 526 . . . . . . . . . . 11  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  v  e.  J ) )  /\  P  e.  v )  ->  v  e.  J )
33 simpr 109 . . . . . . . . . . 11  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  v  e.  J ) )  /\  P  e.  v )  ->  P  e.  v )
341mopni2 13123 . . . . . . . . . . 11  |-  ( ( C  e.  ( *Met `  X )  /\  v  e.  J  /\  P  e.  v
)  ->  E. z  e.  RR+  ( P (
ball `  C )
z )  C_  v
)
3531, 32, 33, 34syl3anc 1228 . . . . . . . . . 10  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  v  e.  J ) )  /\  P  e.  v )  ->  E. z  e.  RR+  ( P (
ball `  C )
z )  C_  v
)
36 sstr2 3149 . . . . . . . . . . . 12  |-  ( ( F " ( P ( ball `  C
) z ) ) 
C_  ( F "
v )  ->  (
( F " v
)  C_  ( ( F `  P )
( ball `  D )
y )  ->  ( F " ( P (
ball `  C )
z ) )  C_  ( ( F `  P ) ( ball `  D ) y ) ) )
37 imass2 4980 . . . . . . . . . . . 12  |-  ( ( P ( ball `  C
) z )  C_  v  ->  ( F "
( P ( ball `  C ) z ) )  C_  ( F " v ) )
3836, 37syl11 31 . . . . . . . . . . 11  |-  ( ( F " v ) 
C_  ( ( F `
 P ) (
ball `  D )
y )  ->  (
( P ( ball `  C ) z ) 
C_  v  ->  ( F " ( P (
ball `  C )
z ) )  C_  ( ( F `  P ) ( ball `  D ) y ) ) )
3938reximdv 2567 . . . . . . . . . 10  |-  ( ( F " v ) 
C_  ( ( F `
 P ) (
ball `  D )
y )  ->  ( E. z  e.  RR+  ( P ( ball `  C
) z )  C_  v  ->  E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) )
4035, 39syl5com 29 . . . . . . . . 9  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  v  e.  J ) )  /\  P  e.  v )  ->  (
( F " v
)  C_  ( ( F `  P )
( ball `  D )
y )  ->  E. z  e.  RR+  ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y ) ) )
4140expimpd 361 . . . . . . . 8  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  RR+  /\  v  e.  J ) )  ->  ( ( P  e.  v  /\  ( F " v ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) )  ->  E. z  e.  RR+  ( F " ( P (
ball `  C )
z ) )  C_  ( ( F `  P ) ( ball `  D ) y ) ) )
4241expr 373 . . . . . . 7  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
( v  e.  J  ->  ( ( P  e.  v  /\  ( F
" v )  C_  ( ( F `  P ) ( ball `  D ) y ) )  ->  E. z  e.  RR+  ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y ) ) ) )
4342rexlimdv 2582 . . . . . 6  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
( E. v  e.  J  ( P  e.  v  /\  ( F
" v )  C_  ( ( F `  P ) ( ball `  D ) y ) )  ->  E. z  e.  RR+  ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y ) ) )
4429, 43syld 45 . . . . 5  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
( A. u  e. 
ran  ( ball `  D
) ( ( F `
 P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) )  ->  E. z  e.  RR+  ( F " ( P (
ball `  C )
z ) )  C_  ( ( F `  P ) ( ball `  D ) y ) ) )
4544ralrimdva 2546 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( A. u  e. 
ran  ( ball `  D
) ( ( F `
 P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) )  ->  A. y  e.  RR+  E. z  e.  RR+  ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y ) ) )
46 simpl2 991 . . . . . . . . 9  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  ->  D  e.  ( *Met `  Y ) )
47 blss 13068 . . . . . . . . . 10  |-  ( ( D  e.  ( *Met `  Y )  /\  u  e.  ran  ( ball `  D )  /\  ( F `  P
)  e.  u )  ->  E. y  e.  RR+  ( ( F `  P ) ( ball `  D ) y ) 
C_  u )
48473expib 1196 . . . . . . . . 9  |-  ( D  e.  ( *Met `  Y )  ->  (
( u  e.  ran  ( ball `  D )  /\  ( F `  P
)  e.  u )  ->  E. y  e.  RR+  ( ( F `  P ) ( ball `  D ) y ) 
C_  u ) )
4946, 48syl 14 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( ( u  e. 
ran  ( ball `  D
)  /\  ( F `  P )  e.  u
)  ->  E. y  e.  RR+  ( ( F `
 P ) (
ball `  D )
y )  C_  u
) )
50 r19.29r 2604 . . . . . . . . . 10  |-  ( ( E. y  e.  RR+  ( ( F `  P ) ( ball `  D ) y ) 
C_  u  /\  A. y  e.  RR+  E. z  e.  RR+  ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y ) )  ->  E. y  e.  RR+  (
( ( F `  P ) ( ball `  D ) y ) 
C_  u  /\  E. z  e.  RR+  ( F
" ( P (
ball `  C )
z ) )  C_  ( ( F `  P ) ( ball `  D ) y ) ) )
5130ad3antrrr 484 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  ( ( F `  P ) ( ball `  D ) y ) 
C_  u )  /\  ( z  e.  RR+  /\  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) )  ->  C  e.  ( *Met `  X
) )
5213ad2antrr 480 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  ( ( F `  P ) ( ball `  D ) y ) 
C_  u )  /\  ( z  e.  RR+  /\  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) )  ->  P  e.  X
)
53 rpxr 9597 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  RR+  ->  z  e. 
RR* )
5453ad2antrl 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  ( ( F `  P ) ( ball `  D ) y ) 
C_  u )  /\  ( z  e.  RR+  /\  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) )  ->  z  e.  RR* )
551blopn 13130 . . . . . . . . . . . . . . . 16  |-  ( ( C  e.  ( *Met `  X )  /\  P  e.  X  /\  z  e.  RR* )  ->  ( P ( ball `  C ) z )  e.  J )
5651, 52, 54, 55syl3anc 1228 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  ( ( F `  P ) ( ball `  D ) y ) 
C_  u )  /\  ( z  e.  RR+  /\  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) )  ->  ( P (
ball `  C )
z )  e.  J
)
57 simprl 521 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  ( ( F `  P ) ( ball `  D ) y ) 
C_  u )  /\  ( z  e.  RR+  /\  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) )  ->  z  e.  RR+ )
58 blcntr 13056 . . . . . . . . . . . . . . . 16  |-  ( ( C  e.  ( *Met `  X )  /\  P  e.  X  /\  z  e.  RR+ )  ->  P  e.  ( P ( ball `  C
) z ) )
5951, 52, 57, 58syl3anc 1228 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  ( ( F `  P ) ( ball `  D ) y ) 
C_  u )  /\  ( z  e.  RR+  /\  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) )  ->  P  e.  ( P ( ball `  C
) z ) )
60 sstr 3150 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y )  /\  (
( F `  P
) ( ball `  D
) y )  C_  u )  ->  ( F " ( P (
ball `  C )
z ) )  C_  u )
6160ad2ant2l 500 . . . . . . . . . . . . . . . 16  |-  ( ( ( z  e.  RR+  /\  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) )  /\  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  ( ( F `  P ) ( ball `  D ) y ) 
C_  u ) )  ->  ( F "
( P ( ball `  C ) z ) )  C_  u )
6261ancoms 266 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  ( ( F `  P ) ( ball `  D ) y ) 
C_  u )  /\  ( z  e.  RR+  /\  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) )  ->  ( F "
( P ( ball `  C ) z ) )  C_  u )
63 eleq2 2230 . . . . . . . . . . . . . . . . 17  |-  ( v  =  ( P (
ball `  C )
z )  ->  ( P  e.  v  <->  P  e.  ( P ( ball `  C
) z ) ) )
64 imaeq2 4942 . . . . . . . . . . . . . . . . . 18  |-  ( v  =  ( P (
ball `  C )
z )  ->  ( F " v )  =  ( F " ( P ( ball `  C
) z ) ) )
6564sseq1d 3171 . . . . . . . . . . . . . . . . 17  |-  ( v  =  ( P (
ball `  C )
z )  ->  (
( F " v
)  C_  u  <->  ( F " ( P ( ball `  C ) z ) )  C_  u )
)
6663, 65anbi12d 465 . . . . . . . . . . . . . . . 16  |-  ( v  =  ( P (
ball `  C )
z )  ->  (
( P  e.  v  /\  ( F "
v )  C_  u
)  <->  ( P  e.  ( P ( ball `  C ) z )  /\  ( F "
( P ( ball `  C ) z ) )  C_  u )
) )
6766rspcev 2830 . . . . . . . . . . . . . . 15  |-  ( ( ( P ( ball `  C ) z )  e.  J  /\  ( P  e.  ( P
( ball `  C )
z )  /\  ( F " ( P (
ball `  C )
z ) )  C_  u ) )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  u )
)
6856, 59, 62, 67syl12anc 1226 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  ( ( F `  P ) ( ball `  D ) y ) 
C_  u )  /\  ( z  e.  RR+  /\  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  u )
)
6968expr 373 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  ( ( F `  P ) ( ball `  D ) y ) 
C_  u )  /\  z  e.  RR+ )  -> 
( ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) ) )
7069rexlimdva 2583 . . . . . . . . . . . 12  |-  ( ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  /\  ( ( F `  P ) ( ball `  D ) y ) 
C_  u )  -> 
( E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) ) )
7170expimpd 361 . . . . . . . . . . 11  |-  ( ( ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  y  e.  RR+ )  -> 
( ( ( ( F `  P ) ( ball `  D
) y )  C_  u  /\  E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  u )
) )
7271rexlimdva 2583 . . . . . . . . . 10  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( E. y  e.  RR+  ( ( ( F `
 P ) (
ball `  D )
y )  C_  u  /\  E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  u )
) )
7350, 72syl5 32 . . . . . . . . 9  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( ( E. y  e.  RR+  ( ( F `
 P ) (
ball `  D )
y )  C_  u  /\  A. y  e.  RR+  E. z  e.  RR+  ( F " ( P (
ball `  C )
z ) )  C_  ( ( F `  P ) ( ball `  D ) y ) )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) ) )
7473expd 256 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( E. y  e.  RR+  ( ( F `  P ) ( ball `  D ) y ) 
C_  u  ->  ( A. y  e.  RR+  E. z  e.  RR+  ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) ) ) )
7549, 74syld 45 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( ( u  e. 
ran  ( ball `  D
)  /\  ( F `  P )  e.  u
)  ->  ( A. y  e.  RR+  E. z  e.  RR+  ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) ) ) )
7675com23 78 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( A. y  e.  RR+  E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y )  ->  (
( u  e.  ran  ( ball `  D )  /\  ( F `  P
)  e.  u )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  u )
) ) )
7776exp4a 364 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( A. y  e.  RR+  E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y )  ->  (
u  e.  ran  ( ball `  D )  -> 
( ( F `  P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  u )
) ) ) )
7877ralrimdv 2545 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( A. y  e.  RR+  E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y )  ->  A. u  e.  ran  ( ball `  D
) ( ( F `
 P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) ) ) )
7945, 78impbid 128 . . 3  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  /\  F : X --> Y )  -> 
( A. u  e. 
ran  ( ball `  D
) ( ( F `
 P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) )  <->  A. y  e.  RR+  E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) )
8079pm5.32da 448 . 2  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  ->  (
( F : X --> Y  /\  A. u  e. 
ran  ( ball `  D
) ( ( F `
 P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) ) )  <-> 
( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  ( F " ( P ( ball `  C
) z ) ) 
C_  ( ( F `
 P ) (
ball `  D )
y ) ) ) )
8110, 80bitrd 187 1  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X --> Y  /\  A. y  e.  RR+  E. z  e.  RR+  ( F "
( P ( ball `  C ) z ) )  C_  ( ( F `  P )
( ball `  D )
y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136   A.wral 2444   E.wrex 2445    C_ wss 3116   ran crn 4605   "cima 4607   -->wf 5184   ` cfv 5188  (class class class)co 5842   RR*cxr 7932   RR+crp 9589   topGenctg 12571   *Metcxmet 12620   ballcbl 12622   MetOpencmopn 12625  TopOnctopon 12648    CnP ccnp 12826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-map 6616  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-xneg 9708  df-xadd 9709  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-topgen 12577  df-psmet 12627  df-xmet 12628  df-bl 12630  df-mopn 12631  df-top 12636  df-topon 12649  df-bases 12681  df-cnp 12829
This theorem is referenced by:  metcnp  13152
  Copyright terms: Public domain W3C validator