| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neipsm | Unicode version | ||
| Description: A neighborhood of a set is a neighborhood of every point in the set. Proposition 1 of [BourbakiTop1] p. I.2. (Contributed by FL, 16-Nov-2006.) (Revised by Jim Kingdon, 22-Mar-2023.) |
| Ref | Expression |
|---|---|
| neips.1 |
|
| Ref | Expression |
|---|---|
| neipsm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi 3767 |
. . . . . 6
| |
| 2 | neiss 14470 |
. . . . . 6
| |
| 3 | 1, 2 | syl3an3 1284 |
. . . . 5
|
| 4 | 3 | 3exp 1204 |
. . . 4
|
| 5 | 4 | ralrimdv 2576 |
. . 3
|
| 6 | 5 | 3ad2ant1 1020 |
. 2
|
| 7 | eleq1w 2257 |
. . . . . . 7
| |
| 8 | 7 | cbvexv 1933 |
. . . . . 6
|
| 9 | r19.28mv 3544 |
. . . . . 6
| |
| 10 | 8, 9 | sylbir 135 |
. . . . 5
|
| 11 | 10 | 3ad2ant3 1022 |
. . . 4
|
| 12 | ssrab2 3269 |
. . . . . . . . . 10
| |
| 13 | uniopn 14321 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | mpan2 425 |
. . . . . . . . 9
|
| 15 | 14 | ad2antrr 488 |
. . . . . . . 8
|
| 16 | sseq1 3207 |
. . . . . . . . . . . . . . . 16
| |
| 17 | 16 | elrab 2920 |
. . . . . . . . . . . . . . 15
|
| 18 | elunii 3845 |
. . . . . . . . . . . . . . 15
| |
| 19 | 17, 18 | sylan2br 288 |
. . . . . . . . . . . . . 14
|
| 20 | 19 | an12s 565 |
. . . . . . . . . . . . 13
|
| 21 | 20 | rexlimiva 2609 |
. . . . . . . . . . . 12
|
| 22 | 21 | ralimi 2560 |
. . . . . . . . . . 11
|
| 23 | dfss3 3173 |
. . . . . . . . . . 11
| |
| 24 | 22, 23 | sylibr 134 |
. . . . . . . . . 10
|
| 25 | 24 | adantl 277 |
. . . . . . . . 9
|
| 26 | unissb 3870 |
. . . . . . . . . 10
| |
| 27 | sseq1 3207 |
. . . . . . . . . . . 12
| |
| 28 | 27 | elrab 2920 |
. . . . . . . . . . 11
|
| 29 | 28 | simprbi 275 |
. . . . . . . . . 10
|
| 30 | 26, 29 | mprgbir 2555 |
. . . . . . . . 9
|
| 31 | 25, 30 | jctir 313 |
. . . . . . . 8
|
| 32 | sseq2 3208 |
. . . . . . . . . 10
| |
| 33 | sseq1 3207 |
. . . . . . . . . 10
| |
| 34 | 32, 33 | anbi12d 473 |
. . . . . . . . 9
|
| 35 | 34 | rspcev 2868 |
. . . . . . . 8
|
| 36 | 15, 31, 35 | syl2anc 411 |
. . . . . . 7
|
| 37 | 36 | ex 115 |
. . . . . 6
|
| 38 | 37 | anim2d 337 |
. . . . 5
|
| 39 | 38 | 3adant3 1019 |
. . . 4
|
| 40 | 11, 39 | sylbid 150 |
. . 3
|
| 41 | ssel2 3179 |
. . . . . . 7
| |
| 42 | neips.1 |
. . . . . . . 8
| |
| 43 | 42 | isneip 14466 |
. . . . . . 7
|
| 44 | 41, 43 | sylan2 286 |
. . . . . 6
|
| 45 | 44 | anassrs 400 |
. . . . 5
|
| 46 | 45 | ralbidva 2493 |
. . . 4
|
| 47 | 46 | 3adant3 1019 |
. . 3
|
| 48 | 42 | isnei 14464 |
. . . 4
|
| 49 | 48 | 3adant3 1019 |
. . 3
|
| 50 | 40, 47, 49 | 3imtr4d 203 |
. 2
|
| 51 | 6, 50 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-top 14318 df-nei 14459 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |