Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > neipsm | Unicode version |
Description: A neighborhood of a set is a neighborhood of every point in the set. Proposition 1 of [BourbakiTop1] p. I.2. (Contributed by FL, 16-Nov-2006.) (Revised by Jim Kingdon, 22-Mar-2023.) |
Ref | Expression |
---|---|
neips.1 |
Ref | Expression |
---|---|
neipsm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssi 3724 | . . . . . 6 | |
2 | neiss 12944 | . . . . . 6 | |
3 | 1, 2 | syl3an3 1268 | . . . . 5 |
4 | 3 | 3exp 1197 | . . . 4 |
5 | 4 | ralrimdv 2549 | . . 3 |
6 | 5 | 3ad2ant1 1013 | . 2 |
7 | eleq1w 2231 | . . . . . . 7 | |
8 | 7 | cbvexv 1911 | . . . . . 6 |
9 | r19.28mv 3507 | . . . . . 6 | |
10 | 8, 9 | sylbir 134 | . . . . 5 |
11 | 10 | 3ad2ant3 1015 | . . . 4 |
12 | ssrab2 3232 | . . . . . . . . . 10 | |
13 | uniopn 12793 | . . . . . . . . . 10 | |
14 | 12, 13 | mpan2 423 | . . . . . . . . 9 |
15 | 14 | ad2antrr 485 | . . . . . . . 8 |
16 | sseq1 3170 | . . . . . . . . . . . . . . . 16 | |
17 | 16 | elrab 2886 | . . . . . . . . . . . . . . 15 |
18 | elunii 3801 | . . . . . . . . . . . . . . 15 | |
19 | 17, 18 | sylan2br 286 | . . . . . . . . . . . . . 14 |
20 | 19 | an12s 560 | . . . . . . . . . . . . 13 |
21 | 20 | rexlimiva 2582 | . . . . . . . . . . . 12 |
22 | 21 | ralimi 2533 | . . . . . . . . . . 11 |
23 | dfss3 3137 | . . . . . . . . . . 11 | |
24 | 22, 23 | sylibr 133 | . . . . . . . . . 10 |
25 | 24 | adantl 275 | . . . . . . . . 9 |
26 | unissb 3826 | . . . . . . . . . 10 | |
27 | sseq1 3170 | . . . . . . . . . . . 12 | |
28 | 27 | elrab 2886 | . . . . . . . . . . 11 |
29 | 28 | simprbi 273 | . . . . . . . . . 10 |
30 | 26, 29 | mprgbir 2528 | . . . . . . . . 9 |
31 | 25, 30 | jctir 311 | . . . . . . . 8 |
32 | sseq2 3171 | . . . . . . . . . 10 | |
33 | sseq1 3170 | . . . . . . . . . 10 | |
34 | 32, 33 | anbi12d 470 | . . . . . . . . 9 |
35 | 34 | rspcev 2834 | . . . . . . . 8 |
36 | 15, 31, 35 | syl2anc 409 | . . . . . . 7 |
37 | 36 | ex 114 | . . . . . 6 |
38 | 37 | anim2d 335 | . . . . 5 |
39 | 38 | 3adant3 1012 | . . . 4 |
40 | 11, 39 | sylbid 149 | . . 3 |
41 | ssel2 3142 | . . . . . . 7 | |
42 | neips.1 | . . . . . . . 8 | |
43 | 42 | isneip 12940 | . . . . . . 7 |
44 | 41, 43 | sylan2 284 | . . . . . 6 |
45 | 44 | anassrs 398 | . . . . 5 |
46 | 45 | ralbidva 2466 | . . . 4 |
47 | 46 | 3adant3 1012 | . . 3 |
48 | 42 | isnei 12938 | . . . 4 |
49 | 48 | 3adant3 1012 | . . 3 |
50 | 40, 47, 49 | 3imtr4d 202 | . 2 |
51 | 6, 50 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 wex 1485 wcel 2141 wral 2448 wrex 2449 crab 2452 wss 3121 csn 3583 cuni 3796 cfv 5198 ctop 12789 cnei 12932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-top 12790 df-nei 12933 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |