| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neipsm | Unicode version | ||
| Description: A neighborhood of a set is a neighborhood of every point in the set. Proposition 1 of [BourbakiTop1] p. I.2. (Contributed by FL, 16-Nov-2006.) (Revised by Jim Kingdon, 22-Mar-2023.) |
| Ref | Expression |
|---|---|
| neips.1 |
|
| Ref | Expression |
|---|---|
| neipsm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi 3811 |
. . . . . 6
| |
| 2 | neiss 14818 |
. . . . . 6
| |
| 3 | 1, 2 | syl3an3 1306 |
. . . . 5
|
| 4 | 3 | 3exp 1226 |
. . . 4
|
| 5 | 4 | ralrimdv 2609 |
. . 3
|
| 6 | 5 | 3ad2ant1 1042 |
. 2
|
| 7 | eleq1w 2290 |
. . . . . . 7
| |
| 8 | 7 | cbvexv 1965 |
. . . . . 6
|
| 9 | r19.28mv 3584 |
. . . . . 6
| |
| 10 | 8, 9 | sylbir 135 |
. . . . 5
|
| 11 | 10 | 3ad2ant3 1044 |
. . . 4
|
| 12 | ssrab2 3309 |
. . . . . . . . . 10
| |
| 13 | uniopn 14669 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | mpan2 425 |
. . . . . . . . 9
|
| 15 | 14 | ad2antrr 488 |
. . . . . . . 8
|
| 16 | sseq1 3247 |
. . . . . . . . . . . . . . . 16
| |
| 17 | 16 | elrab 2959 |
. . . . . . . . . . . . . . 15
|
| 18 | elunii 3892 |
. . . . . . . . . . . . . . 15
| |
| 19 | 17, 18 | sylan2br 288 |
. . . . . . . . . . . . . 14
|
| 20 | 19 | an12s 565 |
. . . . . . . . . . . . 13
|
| 21 | 20 | rexlimiva 2643 |
. . . . . . . . . . . 12
|
| 22 | 21 | ralimi 2593 |
. . . . . . . . . . 11
|
| 23 | dfss3 3213 |
. . . . . . . . . . 11
| |
| 24 | 22, 23 | sylibr 134 |
. . . . . . . . . 10
|
| 25 | 24 | adantl 277 |
. . . . . . . . 9
|
| 26 | unissb 3917 |
. . . . . . . . . 10
| |
| 27 | sseq1 3247 |
. . . . . . . . . . . 12
| |
| 28 | 27 | elrab 2959 |
. . . . . . . . . . 11
|
| 29 | 28 | simprbi 275 |
. . . . . . . . . 10
|
| 30 | 26, 29 | mprgbir 2588 |
. . . . . . . . 9
|
| 31 | 25, 30 | jctir 313 |
. . . . . . . 8
|
| 32 | sseq2 3248 |
. . . . . . . . . 10
| |
| 33 | sseq1 3247 |
. . . . . . . . . 10
| |
| 34 | 32, 33 | anbi12d 473 |
. . . . . . . . 9
|
| 35 | 34 | rspcev 2907 |
. . . . . . . 8
|
| 36 | 15, 31, 35 | syl2anc 411 |
. . . . . . 7
|
| 37 | 36 | ex 115 |
. . . . . 6
|
| 38 | 37 | anim2d 337 |
. . . . 5
|
| 39 | 38 | 3adant3 1041 |
. . . 4
|
| 40 | 11, 39 | sylbid 150 |
. . 3
|
| 41 | ssel2 3219 |
. . . . . . 7
| |
| 42 | neips.1 |
. . . . . . . 8
| |
| 43 | 42 | isneip 14814 |
. . . . . . 7
|
| 44 | 41, 43 | sylan2 286 |
. . . . . 6
|
| 45 | 44 | anassrs 400 |
. . . . 5
|
| 46 | 45 | ralbidva 2526 |
. . . 4
|
| 47 | 46 | 3adant3 1041 |
. . 3
|
| 48 | 42 | isnei 14812 |
. . . 4
|
| 49 | 48 | 3adant3 1041 |
. . 3
|
| 50 | 40, 47, 49 | 3imtr4d 203 |
. 2
|
| 51 | 6, 50 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-top 14666 df-nei 14807 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |