| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neipsm | Unicode version | ||
| Description: A neighborhood of a set is a neighborhood of every point in the set. Proposition 1 of [BourbakiTop1] p. I.2. (Contributed by FL, 16-Nov-2006.) (Revised by Jim Kingdon, 22-Mar-2023.) |
| Ref | Expression |
|---|---|
| neips.1 |
|
| Ref | Expression |
|---|---|
| neipsm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi 3788 |
. . . . . 6
| |
| 2 | neiss 14737 |
. . . . . 6
| |
| 3 | 1, 2 | syl3an3 1285 |
. . . . 5
|
| 4 | 3 | 3exp 1205 |
. . . 4
|
| 5 | 4 | ralrimdv 2587 |
. . 3
|
| 6 | 5 | 3ad2ant1 1021 |
. 2
|
| 7 | eleq1w 2268 |
. . . . . . 7
| |
| 8 | 7 | cbvexv 1943 |
. . . . . 6
|
| 9 | r19.28mv 3561 |
. . . . . 6
| |
| 10 | 8, 9 | sylbir 135 |
. . . . 5
|
| 11 | 10 | 3ad2ant3 1023 |
. . . 4
|
| 12 | ssrab2 3286 |
. . . . . . . . . 10
| |
| 13 | uniopn 14588 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | mpan2 425 |
. . . . . . . . 9
|
| 15 | 14 | ad2antrr 488 |
. . . . . . . 8
|
| 16 | sseq1 3224 |
. . . . . . . . . . . . . . . 16
| |
| 17 | 16 | elrab 2936 |
. . . . . . . . . . . . . . 15
|
| 18 | elunii 3869 |
. . . . . . . . . . . . . . 15
| |
| 19 | 17, 18 | sylan2br 288 |
. . . . . . . . . . . . . 14
|
| 20 | 19 | an12s 565 |
. . . . . . . . . . . . 13
|
| 21 | 20 | rexlimiva 2620 |
. . . . . . . . . . . 12
|
| 22 | 21 | ralimi 2571 |
. . . . . . . . . . 11
|
| 23 | dfss3 3190 |
. . . . . . . . . . 11
| |
| 24 | 22, 23 | sylibr 134 |
. . . . . . . . . 10
|
| 25 | 24 | adantl 277 |
. . . . . . . . 9
|
| 26 | unissb 3894 |
. . . . . . . . . 10
| |
| 27 | sseq1 3224 |
. . . . . . . . . . . 12
| |
| 28 | 27 | elrab 2936 |
. . . . . . . . . . 11
|
| 29 | 28 | simprbi 275 |
. . . . . . . . . 10
|
| 30 | 26, 29 | mprgbir 2566 |
. . . . . . . . 9
|
| 31 | 25, 30 | jctir 313 |
. . . . . . . 8
|
| 32 | sseq2 3225 |
. . . . . . . . . 10
| |
| 33 | sseq1 3224 |
. . . . . . . . . 10
| |
| 34 | 32, 33 | anbi12d 473 |
. . . . . . . . 9
|
| 35 | 34 | rspcev 2884 |
. . . . . . . 8
|
| 36 | 15, 31, 35 | syl2anc 411 |
. . . . . . 7
|
| 37 | 36 | ex 115 |
. . . . . 6
|
| 38 | 37 | anim2d 337 |
. . . . 5
|
| 39 | 38 | 3adant3 1020 |
. . . 4
|
| 40 | 11, 39 | sylbid 150 |
. . 3
|
| 41 | ssel2 3196 |
. . . . . . 7
| |
| 42 | neips.1 |
. . . . . . . 8
| |
| 43 | 42 | isneip 14733 |
. . . . . . 7
|
| 44 | 41, 43 | sylan2 286 |
. . . . . 6
|
| 45 | 44 | anassrs 400 |
. . . . 5
|
| 46 | 45 | ralbidva 2504 |
. . . 4
|
| 47 | 46 | 3adant3 1020 |
. . 3
|
| 48 | 42 | isnei 14731 |
. . . 4
|
| 49 | 48 | 3adant3 1020 |
. . 3
|
| 50 | 40, 47, 49 | 3imtr4d 203 |
. 2
|
| 51 | 6, 50 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-top 14585 df-nei 14726 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |