ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neipsm Unicode version

Theorem neipsm 14390
Description: A neighborhood of a set is a neighborhood of every point in the set. Proposition 1 of [BourbakiTop1] p. I.2. (Contributed by FL, 16-Nov-2006.) (Revised by Jim Kingdon, 22-Mar-2023.)
Hypothesis
Ref Expression
neips.1  |-  X  = 
U. J
Assertion
Ref Expression
neipsm  |-  ( ( J  e.  Top  /\  S  C_  X  /\  E. x  x  e.  S
)  ->  ( N  e.  ( ( nei `  J
) `  S )  <->  A. p  e.  S  N  e.  ( ( nei `  J
) `  { p } ) ) )
Distinct variable groups:    J, p    N, p    S, p    X, p   
x, p, S
Allowed substitution hints:    J( x)    N( x)    X( x)

Proof of Theorem neipsm
Dummy variables  g  h  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snssi 3766 . . . . . 6  |-  ( p  e.  S  ->  { p }  C_  S )
2 neiss 14386 . . . . . 6  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  {
p }  C_  S
)  ->  N  e.  ( ( nei `  J
) `  { p } ) )
31, 2syl3an3 1284 . . . . 5  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  p  e.  S )  ->  N  e.  ( ( nei `  J
) `  { p } ) )
433exp 1204 . . . 4  |-  ( J  e.  Top  ->  ( N  e.  ( ( nei `  J ) `  S )  ->  (
p  e.  S  ->  N  e.  ( ( nei `  J ) `  { p } ) ) ) )
54ralrimdv 2576 . . 3  |-  ( J  e.  Top  ->  ( N  e.  ( ( nei `  J ) `  S )  ->  A. p  e.  S  N  e.  ( ( nei `  J
) `  { p } ) ) )
653ad2ant1 1020 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  E. x  x  e.  S
)  ->  ( N  e.  ( ( nei `  J
) `  S )  ->  A. p  e.  S  N  e.  ( ( nei `  J ) `  { p } ) ) )
7 eleq1w 2257 . . . . . . 7  |-  ( p  =  x  ->  (
p  e.  S  <->  x  e.  S ) )
87cbvexv 1933 . . . . . 6  |-  ( E. p  p  e.  S  <->  E. x  x  e.  S
)
9 r19.28mv 3543 . . . . . 6  |-  ( E. p  p  e.  S  ->  ( A. p  e.  S  ( N  C_  X  /\  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) )  <->  ( N  C_  X  /\  A. p  e.  S  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) ) ) )
108, 9sylbir 135 . . . . 5  |-  ( E. x  x  e.  S  ->  ( A. p  e.  S  ( N  C_  X  /\  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) )  <->  ( N  C_  X  /\  A. p  e.  S  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) ) ) )
11103ad2ant3 1022 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X  /\  E. x  x  e.  S
)  ->  ( A. p  e.  S  ( N  C_  X  /\  E. g  e.  J  (
p  e.  g  /\  g  C_  N ) )  <-> 
( N  C_  X  /\  A. p  e.  S  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) ) ) )
12 ssrab2 3268 . . . . . . . . . 10  |-  { v  e.  J  |  v 
C_  N }  C_  J
13 uniopn 14237 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  { v  e.  J  | 
v  C_  N }  C_  J )  ->  U. {
v  e.  J  | 
v  C_  N }  e.  J )
1412, 13mpan2 425 . . . . . . . . 9  |-  ( J  e.  Top  ->  U. {
v  e.  J  | 
v  C_  N }  e.  J )
1514ad2antrr 488 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  A. p  e.  S  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) )  ->  U. { v  e.  J  |  v 
C_  N }  e.  J )
16 sseq1 3206 . . . . . . . . . . . . . . . 16  |-  ( v  =  g  ->  (
v  C_  N  <->  g  C_  N ) )
1716elrab 2920 . . . . . . . . . . . . . . 15  |-  ( g  e.  { v  e.  J  |  v  C_  N }  <->  ( g  e.  J  /\  g  C_  N ) )
18 elunii 3844 . . . . . . . . . . . . . . 15  |-  ( ( p  e.  g  /\  g  e.  { v  e.  J  |  v  C_  N } )  ->  p  e.  U. { v  e.  J  |  v 
C_  N } )
1917, 18sylan2br 288 . . . . . . . . . . . . . 14  |-  ( ( p  e.  g  /\  ( g  e.  J  /\  g  C_  N ) )  ->  p  e.  U. { v  e.  J  |  v  C_  N }
)
2019an12s 565 . . . . . . . . . . . . 13  |-  ( ( g  e.  J  /\  ( p  e.  g  /\  g  C_  N ) )  ->  p  e.  U. { v  e.  J  |  v  C_  N }
)
2120rexlimiva 2609 . . . . . . . . . . . 12  |-  ( E. g  e.  J  ( p  e.  g  /\  g  C_  N )  ->  p  e.  U. { v  e.  J  |  v 
C_  N } )
2221ralimi 2560 . . . . . . . . . . 11  |-  ( A. p  e.  S  E. g  e.  J  (
p  e.  g  /\  g  C_  N )  ->  A. p  e.  S  p  e.  U. { v  e.  J  |  v 
C_  N } )
23 dfss3 3173 . . . . . . . . . . 11  |-  ( S 
C_  U. { v  e.  J  |  v  C_  N }  <->  A. p  e.  S  p  e.  U. { v  e.  J  |  v 
C_  N } )
2422, 23sylibr 134 . . . . . . . . . 10  |-  ( A. p  e.  S  E. g  e.  J  (
p  e.  g  /\  g  C_  N )  ->  S  C_  U. { v  e.  J  |  v 
C_  N } )
2524adantl 277 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  A. p  e.  S  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) )  ->  S  C_  U. {
v  e.  J  | 
v  C_  N }
)
26 unissb 3869 . . . . . . . . . 10  |-  ( U. { v  e.  J  |  v  C_  N }  C_  N  <->  A. h  e.  {
v  e.  J  | 
v  C_  N }
h  C_  N )
27 sseq1 3206 . . . . . . . . . . . 12  |-  ( v  =  h  ->  (
v  C_  N  <->  h  C_  N
) )
2827elrab 2920 . . . . . . . . . . 11  |-  ( h  e.  { v  e.  J  |  v  C_  N }  <->  ( h  e.  J  /\  h  C_  N ) )
2928simprbi 275 . . . . . . . . . 10  |-  ( h  e.  { v  e.  J  |  v  C_  N }  ->  h  C_  N )
3026, 29mprgbir 2555 . . . . . . . . 9  |-  U. {
v  e.  J  | 
v  C_  N }  C_  N
3125, 30jctir 313 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  A. p  e.  S  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) )  ->  ( S  C_ 
U. { v  e.  J  |  v  C_  N }  /\  U. {
v  e.  J  | 
v  C_  N }  C_  N ) )
32 sseq2 3207 . . . . . . . . . 10  |-  ( h  =  U. { v  e.  J  |  v 
C_  N }  ->  ( S  C_  h  <->  S  C_  U. {
v  e.  J  | 
v  C_  N }
) )
33 sseq1 3206 . . . . . . . . . 10  |-  ( h  =  U. { v  e.  J  |  v 
C_  N }  ->  ( h  C_  N  <->  U. { v  e.  J  |  v 
C_  N }  C_  N ) )
3432, 33anbi12d 473 . . . . . . . . 9  |-  ( h  =  U. { v  e.  J  |  v 
C_  N }  ->  ( ( S  C_  h  /\  h  C_  N )  <-> 
( S  C_  U. {
v  e.  J  | 
v  C_  N }  /\  U. { v  e.  J  |  v  C_  N }  C_  N ) ) )
3534rspcev 2868 . . . . . . . 8  |-  ( ( U. { v  e.  J  |  v  C_  N }  e.  J  /\  ( S  C_  U. {
v  e.  J  | 
v  C_  N }  /\  U. { v  e.  J  |  v  C_  N }  C_  N ) )  ->  E. h  e.  J  ( S  C_  h  /\  h  C_  N ) )
3615, 31, 35syl2anc 411 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  A. p  e.  S  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) )  ->  E. h  e.  J  ( S  C_  h  /\  h  C_  N ) )
3736ex 115 . . . . . 6  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( A. p  e.  S  E. g  e.  J  ( p  e.  g  /\  g  C_  N )  ->  E. h  e.  J  ( S  C_  h  /\  h  C_  N ) ) )
3837anim2d 337 . . . . 5  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( N  C_  X  /\  A. p  e.  S  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) )  -> 
( N  C_  X  /\  E. h  e.  J  ( S  C_  h  /\  h  C_  N ) ) ) )
39383adant3 1019 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X  /\  E. x  x  e.  S
)  ->  ( ( N  C_  X  /\  A. p  e.  S  E. g  e.  J  (
p  e.  g  /\  g  C_  N ) )  ->  ( N  C_  X  /\  E. h  e.  J  ( S  C_  h  /\  h  C_  N
) ) ) )
4011, 39sylbid 150 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  E. x  x  e.  S
)  ->  ( A. p  e.  S  ( N  C_  X  /\  E. g  e.  J  (
p  e.  g  /\  g  C_  N ) )  ->  ( N  C_  X  /\  E. h  e.  J  ( S  C_  h  /\  h  C_  N
) ) ) )
41 ssel2 3178 . . . . . . 7  |-  ( ( S  C_  X  /\  p  e.  S )  ->  p  e.  X )
42 neips.1 . . . . . . . 8  |-  X  = 
U. J
4342isneip 14382 . . . . . . 7  |-  ( ( J  e.  Top  /\  p  e.  X )  ->  ( N  e.  ( ( nei `  J
) `  { p } )  <->  ( N  C_  X  /\  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) ) ) )
4441, 43sylan2 286 . . . . . 6  |-  ( ( J  e.  Top  /\  ( S  C_  X  /\  p  e.  S )
)  ->  ( N  e.  ( ( nei `  J
) `  { p } )  <->  ( N  C_  X  /\  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) ) ) )
4544anassrs 400 . . . . 5  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  p  e.  S
)  ->  ( N  e.  ( ( nei `  J
) `  { p } )  <->  ( N  C_  X  /\  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) ) ) )
4645ralbidva 2493 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( A. p  e.  S  N  e.  ( ( nei `  J
) `  { p } )  <->  A. p  e.  S  ( N  C_  X  /\  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) ) ) )
47463adant3 1019 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  E. x  x  e.  S
)  ->  ( A. p  e.  S  N  e.  ( ( nei `  J
) `  { p } )  <->  A. p  e.  S  ( N  C_  X  /\  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) ) ) )
4842isnei 14380 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( N  e.  ( ( nei `  J
) `  S )  <->  ( N  C_  X  /\  E. h  e.  J  ( S  C_  h  /\  h  C_  N ) ) ) )
49483adant3 1019 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  E. x  x  e.  S
)  ->  ( N  e.  ( ( nei `  J
) `  S )  <->  ( N  C_  X  /\  E. h  e.  J  ( S  C_  h  /\  h  C_  N ) ) ) )
5040, 47, 493imtr4d 203 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  E. x  x  e.  S
)  ->  ( A. p  e.  S  N  e.  ( ( nei `  J
) `  { p } )  ->  N  e.  ( ( nei `  J
) `  S )
) )
516, 50impbid 129 1  |-  ( ( J  e.  Top  /\  S  C_  X  /\  E. x  x  e.  S
)  ->  ( N  e.  ( ( nei `  J
) `  S )  <->  A. p  e.  S  N  e.  ( ( nei `  J
) `  { p } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364   E.wex 1506    e. wcel 2167   A.wral 2475   E.wrex 2476   {crab 2479    C_ wss 3157   {csn 3622   U.cuni 3839   ` cfv 5258   Topctop 14233   neicnei 14374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-top 14234  df-nei 14375
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator