Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > neipsm | Unicode version |
Description: A neighborhood of a set is a neighborhood of every point in the set. Proposition 1 of [BourbakiTop1] p. I.2. (Contributed by FL, 16-Nov-2006.) (Revised by Jim Kingdon, 22-Mar-2023.) |
Ref | Expression |
---|---|
neips.1 |
Ref | Expression |
---|---|
neipsm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssi 3717 | . . . . . 6 | |
2 | neiss 12790 | . . . . . 6 | |
3 | 1, 2 | syl3an3 1263 | . . . . 5 |
4 | 3 | 3exp 1192 | . . . 4 |
5 | 4 | ralrimdv 2545 | . . 3 |
6 | 5 | 3ad2ant1 1008 | . 2 |
7 | eleq1w 2227 | . . . . . . 7 | |
8 | 7 | cbvexv 1906 | . . . . . 6 |
9 | r19.28mv 3501 | . . . . . 6 | |
10 | 8, 9 | sylbir 134 | . . . . 5 |
11 | 10 | 3ad2ant3 1010 | . . . 4 |
12 | ssrab2 3227 | . . . . . . . . . 10 | |
13 | uniopn 12639 | . . . . . . . . . 10 | |
14 | 12, 13 | mpan2 422 | . . . . . . . . 9 |
15 | 14 | ad2antrr 480 | . . . . . . . 8 |
16 | sseq1 3165 | . . . . . . . . . . . . . . . 16 | |
17 | 16 | elrab 2882 | . . . . . . . . . . . . . . 15 |
18 | elunii 3794 | . . . . . . . . . . . . . . 15 | |
19 | 17, 18 | sylan2br 286 | . . . . . . . . . . . . . 14 |
20 | 19 | an12s 555 | . . . . . . . . . . . . 13 |
21 | 20 | rexlimiva 2578 | . . . . . . . . . . . 12 |
22 | 21 | ralimi 2529 | . . . . . . . . . . 11 |
23 | dfss3 3132 | . . . . . . . . . . 11 | |
24 | 22, 23 | sylibr 133 | . . . . . . . . . 10 |
25 | 24 | adantl 275 | . . . . . . . . 9 |
26 | unissb 3819 | . . . . . . . . . 10 | |
27 | sseq1 3165 | . . . . . . . . . . . 12 | |
28 | 27 | elrab 2882 | . . . . . . . . . . 11 |
29 | 28 | simprbi 273 | . . . . . . . . . 10 |
30 | 26, 29 | mprgbir 2524 | . . . . . . . . 9 |
31 | 25, 30 | jctir 311 | . . . . . . . 8 |
32 | sseq2 3166 | . . . . . . . . . 10 | |
33 | sseq1 3165 | . . . . . . . . . 10 | |
34 | 32, 33 | anbi12d 465 | . . . . . . . . 9 |
35 | 34 | rspcev 2830 | . . . . . . . 8 |
36 | 15, 31, 35 | syl2anc 409 | . . . . . . 7 |
37 | 36 | ex 114 | . . . . . 6 |
38 | 37 | anim2d 335 | . . . . 5 |
39 | 38 | 3adant3 1007 | . . . 4 |
40 | 11, 39 | sylbid 149 | . . 3 |
41 | ssel2 3137 | . . . . . . 7 | |
42 | neips.1 | . . . . . . . 8 | |
43 | 42 | isneip 12786 | . . . . . . 7 |
44 | 41, 43 | sylan2 284 | . . . . . 6 |
45 | 44 | anassrs 398 | . . . . 5 |
46 | 45 | ralbidva 2462 | . . . 4 |
47 | 46 | 3adant3 1007 | . . 3 |
48 | 42 | isnei 12784 | . . . 4 |
49 | 48 | 3adant3 1007 | . . 3 |
50 | 40, 47, 49 | 3imtr4d 202 | . 2 |
51 | 6, 50 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 wex 1480 wcel 2136 wral 2444 wrex 2445 crab 2448 wss 3116 csn 3576 cuni 3789 cfv 5188 ctop 12635 cnei 12778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-top 12636 df-nei 12779 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |