ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relsn Unicode version

Theorem relsn 4752
Description: A singleton is a relation iff it is an ordered pair. (Contributed by NM, 24-Sep-2013.)
Hypothesis
Ref Expression
relsn.1  |-  A  e. 
_V
Assertion
Ref Expression
relsn  |-  ( Rel 
{ A }  <->  A  e.  ( _V  X.  _V )
)

Proof of Theorem relsn
StepHypRef Expression
1 df-rel 4654 . 2  |-  ( Rel 
{ A }  <->  { A }  C_  ( _V  X.  _V ) )
2 relsn.1 . . 3  |-  A  e. 
_V
32snss 3745 . 2  |-  ( A  e.  ( _V  X.  _V )  <->  { A }  C_  ( _V  X.  _V )
)
41, 3bitr4i 187 1  |-  ( Rel 
{ A }  <->  A  e.  ( _V  X.  _V )
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2160   _Vcvv 2752    C_ wss 3144   {csn 3610    X. cxp 4645   Rel wrel 4652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-in 3150  df-ss 3157  df-sn 3616  df-rel 4654
This theorem is referenced by:  relsnop  4753  relsn2m  5120
  Copyright terms: Public domain W3C validator