ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relsn Unicode version

Theorem relsn 4824
Description: A singleton is a relation iff it is an ordered pair. (Contributed by NM, 24-Sep-2013.)
Hypothesis
Ref Expression
relsn.1  |-  A  e. 
_V
Assertion
Ref Expression
relsn  |-  ( Rel 
{ A }  <->  A  e.  ( _V  X.  _V )
)

Proof of Theorem relsn
StepHypRef Expression
1 df-rel 4726 . 2  |-  ( Rel 
{ A }  <->  { A }  C_  ( _V  X.  _V ) )
2 relsn.1 . . 3  |-  A  e. 
_V
32snss 3803 . 2  |-  ( A  e.  ( _V  X.  _V )  <->  { A }  C_  ( _V  X.  _V )
)
41, 3bitr4i 187 1  |-  ( Rel 
{ A }  <->  A  e.  ( _V  X.  _V )
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2200   _Vcvv 2799    C_ wss 3197   {csn 3666    X. cxp 4717   Rel wrel 4724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-ss 3210  df-sn 3672  df-rel 4726
This theorem is referenced by:  relsnop  4825  relsn2m  5199
  Copyright terms: Public domain W3C validator