ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relsnopg Unicode version

Theorem relsnopg 4767
Description: A singleton of an ordered pair is a relation. (Contributed by NM, 17-May-1998.) (Revised by BJ, 12-Feb-2022.)
Assertion
Ref Expression
relsnopg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  Rel  { <. A ,  B >. } )

Proof of Theorem relsnopg
StepHypRef Expression
1 opelvvg 4712 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
<. A ,  B >.  e.  ( _V  X.  _V ) )
2 opexg 4261 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
<. A ,  B >.  e. 
_V )
3 relsng 4766 . . 3  |-  ( <. A ,  B >.  e. 
_V  ->  ( Rel  { <. A ,  B >. }  <->  <. A ,  B >.  e.  ( _V  X.  _V ) ) )
42, 3syl 14 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( Rel  { <. A ,  B >. }  <->  <. A ,  B >.  e.  ( _V 
X.  _V ) ) )
51, 4mpbird 167 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  Rel  { <. A ,  B >. } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2167   _Vcvv 2763   {csn 3622   <.cop 3625    X. cxp 4661   Rel wrel 4668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-opab 4095  df-xp 4669  df-rel 4670
This theorem is referenced by:  imasaddfnlemg  12957
  Copyright terms: Public domain W3C validator