ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relsnopg Unicode version

Theorem relsnopg 4823
Description: A singleton of an ordered pair is a relation. (Contributed by NM, 17-May-1998.) (Revised by BJ, 12-Feb-2022.)
Assertion
Ref Expression
relsnopg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  Rel  { <. A ,  B >. } )

Proof of Theorem relsnopg
StepHypRef Expression
1 opelvvg 4768 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
<. A ,  B >.  e.  ( _V  X.  _V ) )
2 opexg 4314 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  -> 
<. A ,  B >.  e. 
_V )
3 relsng 4822 . . 3  |-  ( <. A ,  B >.  e. 
_V  ->  ( Rel  { <. A ,  B >. }  <->  <. A ,  B >.  e.  ( _V  X.  _V ) ) )
42, 3syl 14 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( Rel  { <. A ,  B >. }  <->  <. A ,  B >.  e.  ( _V 
X.  _V ) ) )
51, 4mpbird 167 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  Rel  { <. A ,  B >. } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2200   _Vcvv 2799   {csn 3666   <.cop 3669    X. cxp 4717   Rel wrel 4724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-opab 4146  df-xp 4725  df-rel 4726
This theorem is referenced by:  imasaddfnlemg  13347
  Copyright terms: Public domain W3C validator