| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-rel | Unicode version | ||
| Description: Define the relation predicate. Definition 6.4(1) of [TakeutiZaring] p. 23. For alternate definitions, see dfrel2 5142 and dfrel3 5149. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| df-rel |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA |
. . 3
| |
| 2 | 1 | wrel 4688 |
. 2
|
| 3 | cvv 2773 |
. . . 4
| |
| 4 | 3, 3 | cxp 4681 |
. . 3
|
| 5 | 1, 4 | wss 3170 |
. 2
|
| 6 | 2, 5 | wb 105 |
1
|
| Colors of variables: wff set class |
| This definition is referenced by: brrelex12 4721 0nelrel 4729 releq 4765 nfrel 4768 sbcrel 4769 relss 4770 ssrel 4771 elrel 4785 relsng 4786 relsn 4788 relxp 4792 relun 4800 reliun 4804 reliin 4805 rel0 4808 relopabiv 4809 relopabi 4811 relop 4836 eqbrrdva 4856 elreldm 4913 issref 5074 cnvcnv 5144 relrelss 5218 cnviinm 5233 nfunv 5313 funinsn 5332 oprabss 6044 1st2nd 6280 1stdm 6281 releldm2 6284 reldmtpos 6352 dmtpos 6355 dftpos4 6362 tpostpos 6363 iinerm 6707 fundmen 6912 frecuzrdgtcl 10579 frecuzrdgfunlem 10586 relelbasov 12969 reldvdsrsrg 13929 reldvg 15226 |
| Copyright terms: Public domain | W3C validator |