| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-rel | Unicode version | ||
| Description: Define the relation predicate. Definition 6.4(1) of [TakeutiZaring] p. 23. For alternate definitions, see dfrel2 5178 and dfrel3 5185. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| df-rel |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA |
. . 3
| |
| 2 | 1 | wrel 4723 |
. 2
|
| 3 | cvv 2799 |
. . . 4
| |
| 4 | 3, 3 | cxp 4716 |
. . 3
|
| 5 | 1, 4 | wss 3197 |
. 2
|
| 6 | 2, 5 | wb 105 |
1
|
| Colors of variables: wff set class |
| This definition is referenced by: brrelex12 4756 0nelrel 4764 releq 4800 nfrel 4803 sbcrel 4804 relss 4805 ssrel 4806 elrel 4820 relsng 4821 relsn 4823 relxp 4827 relun 4835 reliun 4839 reliin 4840 rel0 4843 relopabiv 4844 relopabi 4846 relop 4871 eqbrrdva 4891 elreldm 4949 issref 5110 cnvcnv 5180 relrelss 5254 cnviinm 5269 nfunv 5350 funinsn 5369 oprabss 6089 1st2nd 6325 1stdm 6326 releldm2 6329 reldmtpos 6397 dmtpos 6400 dftpos4 6407 tpostpos 6408 iinerm 6752 fundmen 6957 frecuzrdgtcl 10629 frecuzrdgfunlem 10636 relelbasov 13090 reldvdsrsrg 14050 reldvg 15347 |
| Copyright terms: Public domain | W3C validator |