| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > df-rel | Unicode version | ||
| Description: Define the relation predicate. Definition 6.4(1) of [TakeutiZaring] p. 23. For alternate definitions, see dfrel2 5120 and dfrel3 5127. (Contributed by NM, 1-Aug-1994.) | 
| Ref | Expression | 
|---|---|
| df-rel | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cA | 
. . 3
 | |
| 2 | 1 | wrel 4668 | 
. 2
 | 
| 3 | cvv 2763 | 
. . . 4
 | |
| 4 | 3, 3 | cxp 4661 | 
. . 3
 | 
| 5 | 1, 4 | wss 3157 | 
. 2
 | 
| 6 | 2, 5 | wb 105 | 
1
 | 
| Colors of variables: wff set class | 
| This definition is referenced by: brrelex12 4701 0nelrel 4709 releq 4745 nfrel 4748 sbcrel 4749 relss 4750 ssrel 4751 elrel 4765 relsng 4766 relsn 4768 relxp 4772 relun 4780 reliun 4784 reliin 4785 rel0 4788 relopabiv 4789 relopabi 4791 relop 4816 eqbrrdva 4836 elreldm 4892 issref 5052 cnvcnv 5122 relrelss 5196 cnviinm 5211 nfunv 5291 funinsn 5307 oprabss 6008 1st2nd 6239 1stdm 6240 releldm2 6243 reldmtpos 6311 dmtpos 6314 dftpos4 6321 tpostpos 6322 iinerm 6666 fundmen 6865 frecuzrdgtcl 10504 frecuzrdgfunlem 10511 relelbasov 12740 reldvdsrsrg 13648 reldvg 14915 | 
| Copyright terms: Public domain | W3C validator |