| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-rel | Unicode version | ||
| Description: Define the relation predicate. Definition 6.4(1) of [TakeutiZaring] p. 23. For alternate definitions, see dfrel2 5121 and dfrel3 5128. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| df-rel |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA |
. . 3
| |
| 2 | 1 | wrel 4669 |
. 2
|
| 3 | cvv 2763 |
. . . 4
| |
| 4 | 3, 3 | cxp 4662 |
. . 3
|
| 5 | 1, 4 | wss 3157 |
. 2
|
| 6 | 2, 5 | wb 105 |
1
|
| Colors of variables: wff set class |
| This definition is referenced by: brrelex12 4702 0nelrel 4710 releq 4746 nfrel 4749 sbcrel 4750 relss 4751 ssrel 4752 elrel 4766 relsng 4767 relsn 4769 relxp 4773 relun 4781 reliun 4785 reliin 4786 rel0 4789 relopabiv 4790 relopabi 4792 relop 4817 eqbrrdva 4837 elreldm 4893 issref 5053 cnvcnv 5123 relrelss 5197 cnviinm 5212 nfunv 5292 funinsn 5308 oprabss 6012 1st2nd 6248 1stdm 6249 releldm2 6252 reldmtpos 6320 dmtpos 6323 dftpos4 6330 tpostpos 6331 iinerm 6675 fundmen 6874 frecuzrdgtcl 10521 frecuzrdgfunlem 10528 relelbasov 12765 reldvdsrsrg 13724 reldvg 14999 |
| Copyright terms: Public domain | W3C validator |