| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-rel | Unicode version | ||
| Description: Define the relation predicate. Definition 6.4(1) of [TakeutiZaring] p. 23. For alternate definitions, see dfrel2 5132 and dfrel3 5139. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| df-rel |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA |
. . 3
| |
| 2 | 1 | wrel 4679 |
. 2
|
| 3 | cvv 2771 |
. . . 4
| |
| 4 | 3, 3 | cxp 4672 |
. . 3
|
| 5 | 1, 4 | wss 3165 |
. 2
|
| 6 | 2, 5 | wb 105 |
1
|
| Colors of variables: wff set class |
| This definition is referenced by: brrelex12 4712 0nelrel 4720 releq 4756 nfrel 4759 sbcrel 4760 relss 4761 ssrel 4762 elrel 4776 relsng 4777 relsn 4779 relxp 4783 relun 4791 reliun 4795 reliin 4796 rel0 4799 relopabiv 4800 relopabi 4802 relop 4827 eqbrrdva 4847 elreldm 4903 issref 5064 cnvcnv 5134 relrelss 5208 cnviinm 5223 nfunv 5303 funinsn 5322 oprabss 6030 1st2nd 6266 1stdm 6267 releldm2 6270 reldmtpos 6338 dmtpos 6341 dftpos4 6348 tpostpos 6349 iinerm 6693 fundmen 6897 frecuzrdgtcl 10555 frecuzrdgfunlem 10562 relelbasov 12836 reldvdsrsrg 13796 reldvg 15093 |
| Copyright terms: Public domain | W3C validator |