![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > relsn | GIF version |
Description: A singleton is a relation iff it is an ordered pair. (Contributed by NM, 24-Sep-2013.) |
Ref | Expression |
---|---|
relsn.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
relsn | ⊢ (Rel {𝐴} ↔ 𝐴 ∈ (V × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rel 4506 | . 2 ⊢ (Rel {𝐴} ↔ {𝐴} ⊆ (V × V)) | |
2 | relsn.1 | . . 3 ⊢ 𝐴 ∈ V | |
3 | 2 | snss 3615 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ {𝐴} ⊆ (V × V)) |
4 | 1, 3 | bitr4i 186 | 1 ⊢ (Rel {𝐴} ↔ 𝐴 ∈ (V × V)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∈ wcel 1463 Vcvv 2657 ⊆ wss 3037 {csn 3493 × cxp 4497 Rel wrel 4504 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-tru 1317 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-v 2659 df-in 3043 df-ss 3050 df-sn 3499 df-rel 4506 |
This theorem is referenced by: relsnop 4605 relsn2m 4967 |
Copyright terms: Public domain | W3C validator |