| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relsn | GIF version | ||
| Description: A singleton is a relation iff it is an ordered pair. (Contributed by NM, 24-Sep-2013.) |
| Ref | Expression |
|---|---|
| relsn.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| relsn | ⊢ (Rel {𝐴} ↔ 𝐴 ∈ (V × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rel 4670 | . 2 ⊢ (Rel {𝐴} ↔ {𝐴} ⊆ (V × V)) | |
| 2 | relsn.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | 2 | snss 3757 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ {𝐴} ⊆ (V × V)) |
| 4 | 1, 3 | bitr4i 187 | 1 ⊢ (Rel {𝐴} ↔ 𝐴 ∈ (V × V)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∈ wcel 2167 Vcvv 2763 ⊆ wss 3157 {csn 3622 × cxp 4661 Rel wrel 4668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-sn 3628 df-rel 4670 |
| This theorem is referenced by: relsnop 4769 relsn2m 5140 |
| Copyright terms: Public domain | W3C validator |