ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relsn GIF version

Theorem relsn 4709
Description: A singleton is a relation iff it is an ordered pair. (Contributed by NM, 24-Sep-2013.)
Hypothesis
Ref Expression
relsn.1 𝐴 ∈ V
Assertion
Ref Expression
relsn (Rel {𝐴} ↔ 𝐴 ∈ (V × V))

Proof of Theorem relsn
StepHypRef Expression
1 df-rel 4611 . 2 (Rel {𝐴} ↔ {𝐴} ⊆ (V × V))
2 relsn.1 . . 3 𝐴 ∈ V
32snss 3702 . 2 (𝐴 ∈ (V × V) ↔ {𝐴} ⊆ (V × V))
41, 3bitr4i 186 1 (Rel {𝐴} ↔ 𝐴 ∈ (V × V))
Colors of variables: wff set class
Syntax hints:  wb 104  wcel 2136  Vcvv 2726  wss 3116  {csn 3576   × cxp 4602  Rel wrel 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-ss 3129  df-sn 3582  df-rel 4611
This theorem is referenced by:  relsnop  4710  relsn2m  5074
  Copyright terms: Public domain W3C validator