ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relsn GIF version

Theorem relsn 4768
Description: A singleton is a relation iff it is an ordered pair. (Contributed by NM, 24-Sep-2013.)
Hypothesis
Ref Expression
relsn.1 𝐴 ∈ V
Assertion
Ref Expression
relsn (Rel {𝐴} ↔ 𝐴 ∈ (V × V))

Proof of Theorem relsn
StepHypRef Expression
1 df-rel 4670 . 2 (Rel {𝐴} ↔ {𝐴} ⊆ (V × V))
2 relsn.1 . . 3 𝐴 ∈ V
32snss 3757 . 2 (𝐴 ∈ (V × V) ↔ {𝐴} ⊆ (V × V))
41, 3bitr4i 187 1 (Rel {𝐴} ↔ 𝐴 ∈ (V × V))
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2167  Vcvv 2763  wss 3157  {csn 3622   × cxp 4661  Rel wrel 4668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-ss 3170  df-sn 3628  df-rel 4670
This theorem is referenced by:  relsnop  4769  relsn2m  5140
  Copyright terms: Public domain W3C validator