![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > relsn | GIF version |
Description: A singleton is a relation iff it is an ordered pair. (Contributed by NM, 24-Sep-2013.) |
Ref | Expression |
---|---|
relsn.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
relsn | ⊢ (Rel {𝐴} ↔ 𝐴 ∈ (V × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rel 4666 | . 2 ⊢ (Rel {𝐴} ↔ {𝐴} ⊆ (V × V)) | |
2 | relsn.1 | . . 3 ⊢ 𝐴 ∈ V | |
3 | 2 | snss 3753 | . 2 ⊢ (𝐴 ∈ (V × V) ↔ {𝐴} ⊆ (V × V)) |
4 | 1, 3 | bitr4i 187 | 1 ⊢ (Rel {𝐴} ↔ 𝐴 ∈ (V × V)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∈ wcel 2164 Vcvv 2760 ⊆ wss 3153 {csn 3618 × cxp 4657 Rel wrel 4664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3159 df-ss 3166 df-sn 3624 df-rel 4666 |
This theorem is referenced by: relsnop 4765 relsn2m 5136 |
Copyright terms: Public domain | W3C validator |