HomeHome Intuitionistic Logic Explorer
Theorem List (p. 48 of 165)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 4701-4800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnnon 4701 A natural number is an ordinal number. (Contributed by NM, 27-Jun-1994.)
 |-  ( A  e.  om  ->  A  e.  On )
 
Theoremnnoni 4702 A natural number is an ordinal number. (Contributed by NM, 27-Jun-1994.)
 |-  A  e.  om   =>    |-  A  e.  On
 
Theoremnnord 4703 A natural number is ordinal. (Contributed by NM, 17-Oct-1995.)
 |-  ( A  e.  om  ->  Ord  A )
 
Theoremomsson 4704 Omega is a subset of  On. (Contributed by NM, 13-Jun-1994.)
 |- 
 om  C_  On
 
Theoremlimom 4705 Omega is a limit ordinal. Theorem 2.8 of [BellMachover] p. 473. (Contributed by NM, 26-Mar-1995.) (Proof rewritten by Jim Kingdon, 5-Jan-2019.)
 |- 
 Lim  om
 
Theorempeano2b 4706 A class belongs to omega iff its successor does. (Contributed by NM, 3-Dec-1995.)
 |-  ( A  e.  om  <->  suc  A  e.  om )
 
Theoremnnsuc 4707* A nonzero natural number is a successor. (Contributed by NM, 18-Feb-2004.)
 |-  ( ( A  e.  om 
 /\  A  =/=  (/) )  ->  E. x  e.  om  A  =  suc  x )
 
Theoremnnsucpred 4708 The successor of the precedessor of a nonzero natural number. (Contributed by Jim Kingdon, 31-Jul-2022.)
 |-  ( ( A  e.  om 
 /\  A  =/=  (/) )  ->  suc  U. A  =  A )
 
Theoremnndceq0 4709 A natural number is either zero or nonzero. Decidable equality for natural numbers is a special case of the law of the excluded middle which holds in most constructive set theories including ours. (Contributed by Jim Kingdon, 5-Jan-2019.)
 |-  ( A  e.  om  -> DECID  A  =  (/) )
 
Theorem0elnn 4710 A natural number is either the empty set or has the empty set as an element. (Contributed by Jim Kingdon, 23-Aug-2019.)
 |-  ( A  e.  om  ->  ( A  =  (/)  \/  (/)  e.  A ) )
 
Theoremnn0eln0 4711 A natural number is nonempty iff it contains the empty set. Although in constructive mathematics it is generally more natural to work with inhabited sets and ignore the whole concept of nonempty sets, in the specific case of natural numbers this theorem may be helpful in converting proofs which were written assuming excluded middle. (Contributed by Jim Kingdon, 28-Aug-2019.)
 |-  ( A  e.  om  ->  ( (/)  e.  A  <->  A  =/=  (/) ) )
 
Theoremnnregexmid 4712* If inhabited sets of natural numbers always have minimal elements, excluded middle follows. The argument is essentially the same as regexmid 4626 and the larger lesson is that although natural numbers may behave "non-constructively" even in a constructive set theory (for example see nndceq 6643 or nntri3or 6637), sets of natural numbers are a different animal. (Contributed by Jim Kingdon, 6-Sep-2019.)
 |-  ( ( x  C_  om 
 /\  E. y  y  e.  x )  ->  E. y
 ( y  e.  x  /\  A. z ( z  e.  y  ->  -.  z  e.  x ) ) )   =>    |-  ( ph  \/  -.  ph )
 
Theoremomsinds 4713* Strong (or "total") induction principle over  om. (Contributed by Scott Fenton, 17-Jul-2015.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   &    |-  ( x  =  A  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  e.  om  ->  ( A. y  e.  x  ps  ->  ph ) )   =>    |-  ( A  e.  om 
 ->  ch )
 
Theoremnnpredcl 4714 The predecessor of a natural number is a natural number. This theorem is most interesting when the natural number is a successor (as seen in theorems like onsucuni2 4655) but also holds when it is  (/) by uni0 3914. (Contributed by Jim Kingdon, 31-Jul-2022.)
 |-  ( A  e.  om  ->  U. A  e.  om )
 
Theoremnnpredlt 4715 The predecessor (see nnpredcl 4714) of a nonzero natural number is less than (see df-iord 4456) that number. (Contributed by Jim Kingdon, 14-Sep-2024.)
 |-  ( ( A  e.  om 
 /\  A  =/=  (/) )  ->  U. A  e.  A )
 
2.6.6  Relations
 
Syntaxcxp 4716 Extend the definition of a class to include the cross product.
 class  ( A  X.  B )
 
Syntaxccnv 4717 Extend the definition of a class to include the converse of a class.
 class  `' A
 
Syntaxcdm 4718 Extend the definition of a class to include the domain of a class.
 class  dom  A
 
Syntaxcrn 4719 Extend the definition of a class to include the range of a class.
 class  ran  A
 
Syntaxcres 4720 Extend the definition of a class to include the restriction of a class. (Read: The restriction of  A to  B.)
 class  ( A  |`  B )
 
Syntaxcima 4721 Extend the definition of a class to include the image of a class. (Read: The image of  B under  A.)
 class  ( A " B )
 
Syntaxccom 4722 Extend the definition of a class to include the composition of two classes. (Read: The composition of  A and  B.)
 class  ( A  o.  B )
 
Syntaxwrel 4723 Extend the definition of a wff to include the relation predicate. (Read:  A is a relation.)
 wff  Rel  A
 
Definitiondf-xp 4724* Define the Cartesian product of two classes. This is also sometimes called the "cross product" but that term also has other meanings; we intentionally choose a less ambiguous term. Definition 9.11 of [Quine] p. 64. For example,  ( { 1 ,  5 }  X.  {
2 ,  7 } )  =  ( { <. 1 ,  2 >. , 
<. 1 ,  7
>. }  u.  { <. 5 ,  2 >. , 
<. 5 ,  7
>. } ). Another example is that the set of rational numbers is defined using the Cartesian product as  ( ZZ  X.  NN ); the left- and right-hand sides of the Cartesian product represent the top (integer) and bottom (natural) numbers of a fraction. (Contributed by NM, 4-Jul-1994.)
 |-  ( A  X.  B )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  B ) }
 
Definitiondf-rel 4725 Define the relation predicate. Definition 6.4(1) of [TakeutiZaring] p. 23. For alternate definitions, see dfrel2 5178 and dfrel3 5185. (Contributed by NM, 1-Aug-1994.)
 |-  ( Rel  A  <->  A  C_  ( _V 
 X.  _V ) )
 
Definitiondf-cnv 4726* Define the converse of a class. Definition 9.12 of [Quine] p. 64. The converse of a binary relation swaps its arguments, i.e., if  A  e. 
_V and  B  e.  _V then  ( A `' R B  <-> 
B R A ), as proven in brcnv 4904 (see df-br 4083 and df-rel 4725 for more on relations). For example,  `' { <. 2 ,  6 >. , 
<. 3 ,  9
>. }  =  { <. 6 ,  2 >. , 
<. 9 ,  3
>. }.

We use Quine's breve accent (smile) notation. Like Quine, we use it as a prefix, which eliminates the need for parentheses. "Converse" is Quine's terminology. Some authors use a "minus one" exponent and call it "inverse", especially when the argument is a function, although this is not in general a genuine inverse. (Contributed by NM, 4-Jul-1994.)

 |-  `' A  =  { <. x ,  y >.  |  y A x }
 
Definitiondf-co 4727* Define the composition of two classes. Definition 6.6(3) of [TakeutiZaring] p. 24. Note that Definition 7 of [Suppes] p. 63 reverses  A and  B, uses a slash instead of  o., and calls the operation "relative product". (Contributed by NM, 4-Jul-1994.)
 |-  ( A  o.  B )  =  { <. x ,  y >.  |  E. z
 ( x B z 
 /\  z A y ) }
 
Definitiondf-dm 4728* Define the domain of a class. Definition 3 of [Suppes] p. 59. For example, F = {  <. 2 , 6  >.,  <. 3 , 9  >. }  -> dom F = { 2 , 3 } . Contrast with range (defined in df-rn 4729). For alternate definitions see dfdm2 5262, dfdm3 4908, and dfdm4 4914. The notation " dom " is used by Enderton; other authors sometimes use script D. (Contributed by NM, 1-Aug-1994.)
 |- 
 dom  A  =  { x  |  E. y  x A y }
 
Definitiondf-rn 4729 Define the range of a class. For example, F = {  <. 2 , 6  >.,  <. 3 , 9  >. } -> ran F = { 6 , 9 } . Contrast with domain (defined in df-dm 4728). For alternate definitions, see dfrn2 4909, dfrn3 4910, and dfrn4 5188. The notation " ran " is used by Enderton; other authors sometimes use script R or script W. (Contributed by NM, 1-Aug-1994.)
 |- 
 ran  A  =  dom  `' A
 
Definitiondf-res 4730 Define the restriction of a class. Definition 6.6(1) of [TakeutiZaring] p. 24. For example,  ( F  =  { <. 2 ,  6
>. ,  <. 3 ,  9 >. }  /\  B  =  { 1 ,  2 } )  ->  ( F  |`  B )  =  { <. 2 ,  6 >. }. We do not introduce a special syntax for the corestriction of a class: it will be expressed either as the intersection  ( A  i^i  ( _V  X.  B ) ) or as the converse of the restricted converse. (Contributed by NM, 2-Aug-1994.)
 |-  ( A  |`  B )  =  ( A  i^i  ( B  X.  _V )
 )
 
Definitiondf-ima 4731 Define the image of a class (as restricted by another class). Definition 6.6(2) of [TakeutiZaring] p. 24. For example, ( F = {  <. 2 , 6  >.,  <. 3 , 9  >. } /\ B = { 1 , 2 } ) -> ( F  " B ) = { 6 } . Contrast with restriction (df-res 4730) and range (df-rn 4729). For an alternate definition, see dfima2 5069. (Contributed by NM, 2-Aug-1994.)
 |-  ( A " B )  =  ran  ( A  |`  B )
 
Theoremxpeq1 4732 Equality theorem for cross product. (Contributed by NM, 4-Jul-1994.)
 |-  ( A  =  B  ->  ( A  X.  C )  =  ( B  X.  C ) )
 
Theoremxpeq2 4733 Equality theorem for cross product. (Contributed by NM, 5-Jul-1994.)
 |-  ( A  =  B  ->  ( C  X.  A )  =  ( C  X.  B ) )
 
Theoremelxpi 4734* Membership in a cross product. Uses fewer axioms than elxp 4735. (Contributed by NM, 4-Jul-1994.)
 |-  ( A  e.  ( B  X.  C )  ->  E. x E. y ( A  =  <. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C ) ) )
 
Theoremelxp 4735* Membership in a cross product. (Contributed by NM, 4-Jul-1994.)
 |-  ( A  e.  ( B  X.  C )  <->  E. x E. y
 ( A  =  <. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C )
 ) )
 
Theoremelxp2 4736* Membership in a cross product. (Contributed by NM, 23-Feb-2004.)
 |-  ( A  e.  ( B  X.  C )  <->  E. x  e.  B  E. y  e.  C  A  =  <. x ,  y >. )
 
Theoremxpeq12 4737 Equality theorem for cross product. (Contributed by FL, 31-Aug-2009.)
 |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  X.  C )  =  ( B  X.  D ) )
 
Theoremxpeq1i 4738 Equality inference for cross product. (Contributed by NM, 21-Dec-2008.)
 |-  A  =  B   =>    |-  ( A  X.  C )  =  ( B  X.  C )
 
Theoremxpeq2i 4739 Equality inference for cross product. (Contributed by NM, 21-Dec-2008.)
 |-  A  =  B   =>    |-  ( C  X.  A )  =  ( C  X.  B )
 
Theoremxpeq12i 4740 Equality inference for cross product. (Contributed by FL, 31-Aug-2009.)
 |-  A  =  B   &    |-  C  =  D   =>    |-  ( A  X.  C )  =  ( B  X.  D )
 
Theoremxpeq1d 4741 Equality deduction for cross product. (Contributed by Jeff Madsen, 17-Jun-2010.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( A  X.  C )  =  ( B  X.  C ) )
 
Theoremxpeq2d 4742 Equality deduction for cross product. (Contributed by Jeff Madsen, 17-Jun-2010.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( C  X.  A )  =  ( C  X.  B ) )
 
Theoremxpeq12d 4743 Equality deduction for Cartesian product. (Contributed by NM, 8-Dec-2013.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C  =  D )   =>    |-  ( ph  ->  ( A  X.  C )  =  ( B  X.  D ) )
 
Theoremsqxpeqd 4744 Equality deduction for a Cartesian square, see Wikipedia "Cartesian product", https://en.wikipedia.org/wiki/Cartesian_product#n-ary_Cartesian_power. (Contributed by AV, 13-Jan-2020.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( A  X.  A )  =  ( B  X.  B ) )
 
Theoremnfxp 4745 Bound-variable hypothesis builder for cross product. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/_ x ( A  X.  B )
 
Theorem0nelxp 4746 The empty set is not a member of a cross product. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |- 
 -.  (/)  e.  ( A  X.  B )
 
Theorem0nelelxp 4747 A member of a cross product (ordered pair) doesn't contain the empty set. (Contributed by NM, 15-Dec-2008.)
 |-  ( C  e.  ( A  X.  B )  ->  -.  (/)  e.  C )
 
Theoremopelxp 4748 Ordered pair membership in a cross product. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  ( <. A ,  B >.  e.  ( C  X.  D )  <->  ( A  e.  C  /\  B  e.  D ) )
 
Theorembrxp 4749 Binary relation on a cross product. (Contributed by NM, 22-Apr-2004.)
 |-  ( A ( C  X.  D ) B  <-> 
 ( A  e.  C  /\  B  e.  D ) )
 
Theoremopelxpi 4750 Ordered pair membership in a cross product (implication). (Contributed by NM, 28-May-1995.)
 |-  ( ( A  e.  C  /\  B  e.  D )  ->  <. A ,  B >.  e.  ( C  X.  D ) )
 
Theoremopelxpd 4751 Ordered pair membership in a Cartesian product, deduction form. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
 |-  ( ph  ->  A  e.  C )   &    |-  ( ph  ->  B  e.  D )   =>    |-  ( ph  ->  <. A ,  B >.  e.  ( C  X.  D ) )
 
Theoremopelxp1 4752 The first member of an ordered pair of classes in a cross product belongs to first cross product argument. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  ( <. A ,  B >.  e.  ( C  X.  D )  ->  A  e.  C )
 
Theoremopelxp2 4753 The second member of an ordered pair of classes in a cross product belongs to second cross product argument. (Contributed by Mario Carneiro, 26-Apr-2015.)
 |-  ( <. A ,  B >.  e.  ( C  X.  D )  ->  B  e.  D )
 
Theoremotelxp1 4754 The first member of an ordered triple of classes in a cross product belongs to first cross product argument. (Contributed by NM, 28-May-2008.)
 |-  ( <. <. A ,  B >. ,  C >.  e.  (
 ( R  X.  S )  X.  T )  ->  A  e.  R )
 
Theoremrabxp 4755* Membership in a class builder restricted to a cross product. (Contributed by NM, 20-Feb-2014.)
 |-  ( x  =  <. y ,  z >.  ->  ( ph 
 <->  ps ) )   =>    |-  { x  e.  ( A  X.  B )  |  ph }  =  { <. y ,  z >.  |  ( y  e.  A  /\  z  e.  B  /\  ps ) }
 
Theorembrrelex12 4756 A true binary relation on a relation implies the arguments are sets. (This is a property of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.)
 |-  ( ( Rel  R  /\  A R B ) 
 ->  ( A  e.  _V  /\  B  e.  _V )
 )
 
Theorembrrelex1 4757 A true binary relation on a relation implies the first argument is a set. (This is a property of our ordered pair definition.) (Contributed by NM, 18-May-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  ( ( Rel  R  /\  A R B ) 
 ->  A  e.  _V )
 
Theorembrrelex 4758 A true binary relation on a relation implies the first argument is a set. (This is a property of our ordered pair definition.) (Contributed by NM, 18-May-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  ( ( Rel  R  /\  A R B ) 
 ->  A  e.  _V )
 
Theorembrrelex2 4759 A true binary relation on a relation implies the second argument is a set. (This is a property of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.)
 |-  ( ( Rel  R  /\  A R B ) 
 ->  B  e.  _V )
 
Theorembrrelex12i 4760 Two classes that are related by a binary relation are sets. (An artifact of our ordered pair definition.) (Contributed by BJ, 3-Oct-2022.)
 |- 
 Rel  R   =>    |-  ( A R B  ->  ( A  e.  _V  /\  B  e.  _V )
 )
 
Theorembrrelex1i 4761 The first argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by NM, 4-Jun-1998.)
 |- 
 Rel  R   =>    |-  ( A R B  ->  A  e.  _V )
 
Theorembrrelex2i 4762 The second argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by Mario Carneiro, 26-Apr-2015.)
 |- 
 Rel  R   =>    |-  ( A R B  ->  B  e.  _V )
 
Theoremnprrel 4763 No proper class is related to anything via any relation. (Contributed by Roy F. Longton, 30-Jul-2005.)
 |- 
 Rel  R   &    |-  -.  A  e.  _V   =>    |-  -.  A R B
 
Theorem0nelrel 4764 A binary relation does not contain the empty set. (Contributed by AV, 15-Nov-2021.)
 |-  ( Rel  R  ->  (/)  e/  R )
 
Theoremfconstmpt 4765* Representation of a constant function using the mapping operation. (Note that  x cannot appear free in  B.) (Contributed by NM, 12-Oct-1999.) (Revised by Mario Carneiro, 16-Nov-2013.)
 |-  ( A  X.  { B } )  =  ( x  e.  A  |->  B )
 
Theoremvtoclr 4766* Variable to class conversion of transitive relation. (Contributed by NM, 9-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |- 
 Rel  R   &    |-  ( ( x R y  /\  y R z )  ->  x R z )   =>    |-  ( ( A R B  /\  B R C )  ->  A R C )
 
Theoremopelvvg 4767 Ordered pair membership in the universal class of ordered pairs. (Contributed by Mario Carneiro, 3-May-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  <. A ,  B >.  e.  ( _V  X.  _V ) )
 
Theoremopelvv 4768 Ordered pair membership in the universal class of ordered pairs. (Contributed by NM, 22-Aug-2013.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |- 
 <. A ,  B >.  e.  ( _V  X.  _V )
 
Theoremopthprc 4769 Justification theorem for an ordered pair definition that works for any classes, including proper classes. This is a possible definition implied by the footnote in [Jech] p. 78, which says, "The sophisticated reader will not object to our use of a pair of classes." (Contributed by NM, 28-Sep-2003.)
 |-  ( ( ( A  X.  { (/) } )  u.  ( B  X.  { { (/) } } )
 )  =  ( ( C  X.  { (/) } )  u.  ( D  X.  { { (/) } } )
 ) 
 <->  ( A  =  C  /\  B  =  D ) )
 
Theorembrel 4770 Two things in a binary relation belong to the relation's domain. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  R  C_  ( C  X.  D )   =>    |-  ( A R B  ->  ( A  e.  C  /\  B  e.  D ) )
 
Theorembrab2a 4771* Ordered pair membership in an ordered pair class abstraction. (Contributed by Mario Carneiro, 9-Nov-2015.)
 |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph 
 <->  ps ) )   &    |-  R  =  { <. x ,  y >.  |  ( ( x  e.  C  /\  y  e.  D )  /\  ph ) }   =>    |-  ( A R B  <->  ( ( A  e.  C  /\  B  e.  D ) 
 /\  ps ) )
 
Theoremelxp3 4772* Membership in a cross product. (Contributed by NM, 5-Mar-1995.)
 |-  ( A  e.  ( B  X.  C )  <->  E. x E. y
 ( <. x ,  y >.  =  A  /\  <. x ,  y >.  e.  ( B  X.  C ) ) )
 
Theoremopeliunxp 4773 Membership in a union of cross products. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by Mario Carneiro, 1-Jan-2017.)
 |-  ( <. x ,  C >.  e.  U_ x  e.  A  ( { x }  X.  B )  <->  ( x  e.  A  /\  C  e.  B ) )
 
Theoremxpundi 4774 Distributive law for cross product over union. Theorem 103 of [Suppes] p. 52. (Contributed by NM, 12-Aug-2004.)
 |-  ( A  X.  ( B  u.  C ) )  =  ( ( A  X.  B )  u.  ( A  X.  C ) )
 
Theoremxpundir 4775 Distributive law for cross product over union. Similar to Theorem 103 of [Suppes] p. 52. (Contributed by NM, 30-Sep-2002.)
 |-  ( ( A  u.  B )  X.  C )  =  ( ( A  X.  C )  u.  ( B  X.  C ) )
 
Theoremxpiundi 4776* Distributive law for cross product over indexed union. (Contributed by Mario Carneiro, 27-Apr-2014.)
 |-  ( C  X.  U_ x  e.  A  B )  =  U_ x  e.  A  ( C  X.  B )
 
Theoremxpiundir 4777* Distributive law for cross product over indexed union. (Contributed by Mario Carneiro, 27-Apr-2014.)
 |-  ( U_ x  e.  A  B  X.  C )  =  U_ x  e.  A  ( B  X.  C )
 
Theoremiunxpconst 4778* Membership in a union of cross products when the second factor is constant. (Contributed by Mario Carneiro, 29-Dec-2014.)
 |-  U_ x  e.  A  ( { x }  X.  B )  =  ( A  X.  B )
 
Theoremxpun 4779 The cross product of two unions. (Contributed by NM, 12-Aug-2004.)
 |-  ( ( A  u.  B )  X.  ( C  u.  D ) )  =  ( ( ( A  X.  C )  u.  ( A  X.  D ) )  u.  ( ( B  X.  C )  u.  ( B  X.  D ) ) )
 
Theoremelvv 4780* Membership in universal class of ordered pairs. (Contributed by NM, 4-Jul-1994.)
 |-  ( A  e.  ( _V  X.  _V )  <->  E. x E. y  A  =  <. x ,  y >. )
 
Theoremelvvv 4781* Membership in universal class of ordered triples. (Contributed by NM, 17-Dec-2008.)
 |-  ( A  e.  (
 ( _V  X.  _V )  X.  _V )  <->  E. x E. y E. z  A  =  <.
 <. x ,  y >. ,  z >. )
 
Theoremelvvuni 4782 An ordered pair contains its union. (Contributed by NM, 16-Sep-2006.)
 |-  ( A  e.  ( _V  X.  _V )  ->  U. A  e.  A )
 
Theoremmosubopt 4783* "At most one" remains true inside ordered pair quantification. (Contributed by NM, 28-Aug-2007.)
 |-  ( A. y A. z E* x ph  ->  E* x E. y E. z ( A  =  <. y ,  z >.  /\  ph ) )
 
Theoremmosubop 4784* "At most one" remains true inside ordered pair quantification. (Contributed by NM, 28-May-1995.)
 |- 
 E* x ph   =>    |- 
 E* x E. y E. z ( A  =  <. y ,  z >.  /\  ph )
 
Theorembrinxp2 4785 Intersection of binary relation with Cartesian product. (Contributed by NM, 3-Mar-2007.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  ( A ( R  i^i  ( C  X.  D ) ) B  <-> 
 ( A  e.  C  /\  B  e.  D  /\  A R B ) )
 
Theorembrinxp 4786 Intersection of binary relation with Cartesian product. (Contributed by NM, 9-Mar-1997.)
 |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A R B 
 <->  A ( R  i^i  ( C  X.  D ) ) B ) )
 
Theorempoinxp 4787 Intersection of partial order with cross product of its field. (Contributed by Mario Carneiro, 10-Jul-2014.)
 |-  ( R  Po  A  <->  ( R  i^i  ( A  X.  A ) )  Po  A )
 
Theoremsoinxp 4788 Intersection of linear order with cross product of its field. (Contributed by Mario Carneiro, 10-Jul-2014.)
 |-  ( R  Or  A  <->  ( R  i^i  ( A  X.  A ) )  Or  A )
 
Theoremseinxp 4789 Intersection of set-like relation with cross product of its field. (Contributed by Mario Carneiro, 22-Jun-2015.)
 |-  ( R Se  A  <->  ( R  i^i  ( A  X.  A ) ) Se  A )
 
Theoremposng 4790 Partial ordering of a singleton. (Contributed by Jim Kingdon, 5-Dec-2018.)
 |-  ( ( Rel  R  /\  A  e.  _V )  ->  ( R  Po  { A }  <->  -.  A R A ) )
 
Theoremsosng 4791 Strict linear ordering on a singleton. (Contributed by Jim Kingdon, 5-Dec-2018.)
 |-  ( ( Rel  R  /\  A  e.  _V )  ->  ( R  Or  { A }  <->  -.  A R A ) )
 
Theoremopabssxp 4792* An abstraction relation is a subset of a related cross product. (Contributed by NM, 16-Jul-1995.)
 |- 
 { <. x ,  y >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) }  C_  ( A  X.  B )
 
Theorembrab2ga 4793* The law of concretion for a binary relation. See brab2a 4771 for alternate proof. TODO: should one of them be deleted? (Contributed by Mario Carneiro, 28-Apr-2015.) (Proof modification is discouraged.)
 |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph 
 <->  ps ) )   &    |-  R  =  { <. x ,  y >.  |  ( ( x  e.  C  /\  y  e.  D )  /\  ph ) }   =>    |-  ( A R B  <->  ( ( A  e.  C  /\  B  e.  D ) 
 /\  ps ) )
 
Theoremoptocl 4794* Implicit substitution of class for ordered pair. (Contributed by NM, 5-Mar-1995.)
 |-  D  =  ( B  X.  C )   &    |-  ( <. x ,  y >.  =  A  ->  ( ph  <->  ps ) )   &    |-  ( ( x  e.  B  /\  y  e.  C )  ->  ph )   =>    |-  ( A  e.  D  ->  ps )
 
Theorem2optocl 4795* Implicit substitution of classes for ordered pairs. (Contributed by NM, 12-Mar-1995.)
 |-  R  =  ( C  X.  D )   &    |-  ( <. x ,  y >.  =  A  ->  ( ph  <->  ps ) )   &    |-  ( <. z ,  w >.  =  B  ->  ( ps  <->  ch ) )   &    |-  (
 ( ( x  e.  C  /\  y  e.  D )  /\  (
 z  e.  C  /\  w  e.  D )
 )  ->  ph )   =>    |-  ( ( A  e.  R  /\  B  e.  R )  ->  ch )
 
Theorem3optocl 4796* Implicit substitution of classes for ordered pairs. (Contributed by NM, 12-Mar-1995.)
 |-  R  =  ( D  X.  F )   &    |-  ( <. x ,  y >.  =  A  ->  ( ph  <->  ps ) )   &    |-  ( <. z ,  w >.  =  B  ->  ( ps  <->  ch ) )   &    |-  ( <. v ,  u >.  =  C  ->  ( ch  <->  th ) )   &    |-  ( ( ( x  e.  D  /\  y  e.  F )  /\  ( z  e.  D  /\  w  e.  F )  /\  ( v  e.  D  /\  u  e.  F ) )  ->  ph )   =>    |-  ( ( A  e.  R  /\  B  e.  R  /\  C  e.  R ) 
 ->  th )
 
Theoremopbrop 4797* Ordered pair membership in a relation. Special case. (Contributed by NM, 5-Aug-1995.)
 |-  ( ( ( z  =  A  /\  w  =  B )  /\  (
 v  =  C  /\  u  =  D )
 )  ->  ( ph  <->  ps ) )   &    |-  R  =  { <. x ,  y >.  |  ( ( x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) ) 
 /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph )
 ) }   =>    |-  ( ( ( A  e.  S  /\  B  e.  S )  /\  ( C  e.  S  /\  D  e.  S )
 )  ->  ( <. A ,  B >. R <. C ,  D >.  <->  ps ) )
 
Theorem0xp 4798 The cross product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 4-Jul-1994.)
 |-  ( (/)  X.  A )  =  (/)
 
Theoremcsbxpg 4799 Distribute proper substitution through the cross product of two classes. (Contributed by Alan Sare, 10-Nov-2012.)
 |-  ( A  e.  D  -> 
 [_ A  /  x ]_ ( B  X.  C )  =  ( [_ A  /  x ]_ B  X.  [_ A  /  x ]_ C ) )
 
Theoremreleq 4800 Equality theorem for the relation predicate. (Contributed by NM, 1-Aug-1994.)
 |-  ( A  =  B  ->  ( Rel  A  <->  Rel  B ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16411
  Copyright terms: Public domain < Previous  Next >