HomeHome Intuitionistic Logic Explorer
Theorem List (p. 48 of 137)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 4701-4800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsqxpexg 4701 The Cartesian square of a set is a set. (Contributed by AV, 13-Jan-2020.)
 |-  ( A  e.  V  ->  ( A  X.  A )  e.  _V )
 
Theoremrelun 4702 The union of two relations is a relation. Compare Exercise 5 of [TakeutiZaring] p. 25. (Contributed by NM, 12-Aug-1994.)
 |-  ( Rel  ( A  u.  B )  <->  ( Rel  A  /\  Rel  B ) )
 
Theoremrelin1 4703 The intersection with a relation is a relation. (Contributed by NM, 16-Aug-1994.)
 |-  ( Rel  A  ->  Rel  ( A  i^i  B ) )
 
Theoremrelin2 4704 The intersection with a relation is a relation. (Contributed by NM, 17-Jan-2006.)
 |-  ( Rel  B  ->  Rel  ( A  i^i  B ) )
 
Theoremreldif 4705 A difference cutting down a relation is a relation. (Contributed by NM, 31-Mar-1998.)
 |-  ( Rel  A  ->  Rel  ( A  \  B ) )
 
Theoremreliun 4706 An indexed union is a relation iff each member of its indexed family is a relation. (Contributed by NM, 19-Dec-2008.)
 |-  ( Rel  U_ x  e.  A  B  <->  A. x  e.  A  Rel  B )
 
Theoremreliin 4707 An indexed intersection is a relation if at least one of the member of the indexed family is a relation. (Contributed by NM, 8-Mar-2014.)
 |-  ( E. x  e.  A  Rel  B  ->  Rel  |^|_ x  e.  A  B )
 
Theoremreluni 4708* The union of a class is a relation iff any member is a relation. Exercise 6 of [TakeutiZaring] p. 25 and its converse. (Contributed by NM, 13-Aug-2004.)
 |-  ( Rel  U. A  <->  A. x  e.  A  Rel  x )
 
Theoremrelint 4709* The intersection of a class is a relation if at least one member is a relation. (Contributed by NM, 8-Mar-2014.)
 |-  ( E. x  e.  A  Rel  x  ->  Rel  |^| A )
 
Theoremrel0 4710 The empty set is a relation. (Contributed by NM, 26-Apr-1998.)
 |- 
 Rel  (/)
 
Theoremrelopabi 4711 A class of ordered pairs is a relation. (Contributed by Mario Carneiro, 21-Dec-2013.)
 |-  A  =  { <. x ,  y >.  |  ph }   =>    |-  Rel 
 A
 
Theoremrelopab 4712 A class of ordered pairs is a relation. (Contributed by NM, 8-Mar-1995.) (Unnecessary distinct variable restrictions were removed by Alan Sare, 9-Jul-2013.) (Proof shortened by Mario Carneiro, 21-Dec-2013.)
 |- 
 Rel  { <. x ,  y >.  |  ph }
 
Theoremmptrel 4713 The maps-to notation always describes a relationship. (Contributed by Scott Fenton, 16-Apr-2012.)
 |- 
 Rel  ( x  e.  A  |->  B )
 
Theoremreli 4714 The identity relation is a relation. Part of Exercise 4.12(p) of [Mendelson] p. 235. (Contributed by NM, 26-Apr-1998.) (Revised by Mario Carneiro, 21-Dec-2013.)
 |- 
 Rel  _I
 
Theoremrele 4715 The membership relation is a relation. (Contributed by NM, 26-Apr-1998.) (Revised by Mario Carneiro, 21-Dec-2013.)
 |- 
 Rel  _E
 
Theoremopabid2 4716* A relation expressed as an ordered pair abstraction. (Contributed by NM, 11-Dec-2006.)
 |-  ( Rel  A  ->  {
 <. x ,  y >.  | 
 <. x ,  y >.  e.  A }  =  A )
 
Theoreminopab 4717* Intersection of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002.)
 |-  ( { <. x ,  y >.  |  ph }  i^i  {
 <. x ,  y >.  |  ps } )  =  { <. x ,  y >.  |  ( ph  /\  ps ) }
 
Theoremdifopab 4718* The difference of two ordered-pair abstractions. (Contributed by Stefan O'Rear, 17-Jan-2015.)
 |-  ( { <. x ,  y >.  |  ph }  \  { <. x ,  y >.  |  ps } )  =  { <. x ,  y >.  |  ( ph  /\  -.  ps ) }
 
Theoreminxp 4719 The intersection of two cross products. Exercise 9 of [TakeutiZaring] p. 25. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  ( ( A  X.  B )  i^i  ( C  X.  D ) )  =  ( ( A  i^i  C )  X.  ( B  i^i  D ) )
 
Theoremxpindi 4720 Distributive law for cross product over intersection. Theorem 102 of [Suppes] p. 52. (Contributed by NM, 26-Sep-2004.)
 |-  ( A  X.  ( B  i^i  C ) )  =  ( ( A  X.  B )  i^i  ( A  X.  C ) )
 
Theoremxpindir 4721 Distributive law for cross product over intersection. Similar to Theorem 102 of [Suppes] p. 52. (Contributed by NM, 26-Sep-2004.)
 |-  ( ( A  i^i  B )  X.  C )  =  ( ( A  X.  C )  i^i  ( B  X.  C ) )
 
Theoremxpiindim 4722* Distributive law for cross product over indexed intersection. (Contributed by Jim Kingdon, 7-Dec-2018.)
 |-  ( E. y  y  e.  A  ->  ( C  X.  |^|_ x  e.  A  B )  =  |^|_ x  e.  A  ( C  X.  B ) )
 
Theoremxpriindim 4723* Distributive law for cross product over relativized indexed intersection. (Contributed by Jim Kingdon, 7-Dec-2018.)
 |-  ( E. y  y  e.  A  ->  ( C  X.  ( D  i^i  |^|_
 x  e.  A  B ) )  =  (
 ( C  X.  D )  i^i  |^|_ x  e.  A  ( C  X.  B ) ) )
 
Theoremeliunxp 4724* Membership in a union of cross products. Analogue of elxp 4602 for nonconstant  B ( x ). (Contributed by Mario Carneiro, 29-Dec-2014.)
 |-  ( C  e.  U_ x  e.  A  ( { x }  X.  B ) 
 <-> 
 E. x E. y
 ( C  =  <. x ,  y >.  /\  ( x  e.  A  /\  y  e.  B )
 ) )
 
Theoremopeliunxp2 4725* Membership in a union of cross products. (Contributed by Mario Carneiro, 14-Feb-2015.)
 |-  ( x  =  C  ->  B  =  E )   =>    |-  ( <. C ,  D >.  e.  U_ x  e.  A  ( { x }  X.  B )  <->  ( C  e.  A  /\  D  e.  E ) )
 
Theoremraliunxp 4726* Write a double restricted quantification as one universal quantifier. In this version of ralxp 4728, 
B ( y ) is not assumed to be constant. (Contributed by Mario Carneiro, 29-Dec-2014.)
 |-  ( x  =  <. y ,  z >.  ->  ( ph 
 <->  ps ) )   =>    |-  ( A. x  e.  U_  y  e.  A  ( { y }  X.  B ) ph  <->  A. y  e.  A  A. z  e.  B  ps )
 
Theoremrexiunxp 4727* Write a double restricted quantification as one universal quantifier. In this version of rexxp 4729, 
B ( y ) is not assumed to be constant. (Contributed by Mario Carneiro, 14-Feb-2015.)
 |-  ( x  =  <. y ,  z >.  ->  ( ph 
 <->  ps ) )   =>    |-  ( E. x  e.  U_  y  e.  A  ( { y }  X.  B ) ph  <->  E. y  e.  A  E. z  e.  B  ps )
 
Theoremralxp 4728* Universal quantification restricted to a cross product is equivalent to a double restricted quantification. The hypothesis specifies an implicit substitution. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 29-Dec-2014.)
 |-  ( x  =  <. y ,  z >.  ->  ( ph 
 <->  ps ) )   =>    |-  ( A. x  e.  ( A  X.  B ) ph  <->  A. y  e.  A  A. z  e.  B  ps )
 
Theoremrexxp 4729* Existential quantification restricted to a cross product is equivalent to a double restricted quantification. (Contributed by NM, 11-Nov-1995.) (Revised by Mario Carneiro, 14-Feb-2015.)
 |-  ( x  =  <. y ,  z >.  ->  ( ph 
 <->  ps ) )   =>    |-  ( E. x  e.  ( A  X.  B ) ph  <->  E. y  e.  A  E. z  e.  B  ps )
 
Theoremdjussxp 4730* Disjoint union is a subset of a cross product. (Contributed by Stefan O'Rear, 21-Nov-2014.)
 |-  U_ x  e.  A  ( { x }  X.  B )  C_  ( A  X.  _V )
 
Theoremralxpf 4731* Version of ralxp 4728 with bound-variable hypotheses. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |- 
 F/ y ph   &    |-  F/ z ph   &    |-  F/ x ps   &    |-  ( x  = 
 <. y ,  z >.  ->  ( ph  <->  ps ) )   =>    |-  ( A. x  e.  ( A  X.  B ) ph  <->  A. y  e.  A  A. z  e.  B  ps )
 
Theoremrexxpf 4732* Version of rexxp 4729 with bound-variable hypotheses. (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |- 
 F/ y ph   &    |-  F/ z ph   &    |-  F/ x ps   &    |-  ( x  = 
 <. y ,  z >.  ->  ( ph  <->  ps ) )   =>    |-  ( E. x  e.  ( A  X.  B ) ph  <->  E. y  e.  A  E. z  e.  B  ps )
 
Theoremiunxpf 4733* Indexed union on a cross product is equals a double indexed union. The hypothesis specifies an implicit substitution. (Contributed by NM, 19-Dec-2008.)
 |-  F/_ y C   &    |-  F/_ z C   &    |-  F/_ x D   &    |-  ( x  =  <. y ,  z >.  ->  C  =  D )   =>    |-  U_ x  e.  ( A  X.  B ) C  =  U_ y  e.  A  U_ z  e.  B  D
 
Theoremopabbi2dv 4734* Deduce equality of a relation and an ordered-pair class builder. Compare abbi2dv 2276. (Contributed by NM, 24-Feb-2014.)
 |- 
 Rel  A   &    |-  ( ph  ->  (
 <. x ,  y >.  e.  A  <->  ps ) )   =>    |-  ( ph  ->  A  =  { <. x ,  y >.  |  ps }
 )
 
Theoremrelop 4735* A necessary and sufficient condition for a Kuratowski ordered pair to be a relation. (Contributed by NM, 3-Jun-2008.) (Avoid depending on this detail.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( Rel  <. A ,  B >. 
 <-> 
 E. x E. y
 ( A  =  { x }  /\  B  =  { x ,  y }
 ) )
 
Theoremideqg 4736 For sets, the identity relation is the same as equality. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  ( B  e.  V  ->  ( A  _I  B  <->  A  =  B ) )
 
Theoremideq 4737 For sets, the identity relation is the same as equality. (Contributed by NM, 13-Aug-1995.)
 |-  B  e.  _V   =>    |-  ( A  _I  B 
 <->  A  =  B )
 
Theoremididg 4738 A set is identical to itself. (Contributed by NM, 28-May-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  ( A  e.  V  ->  A  _I  A )
 
Theoremissetid 4739 Two ways of expressing set existence. (Contributed by NM, 16-Feb-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  ( A  e.  _V  <->  A  _I  A )
 
Theoremcoss1 4740 Subclass theorem for composition. (Contributed by FL, 30-Dec-2010.)
 |-  ( A  C_  B  ->  ( A  o.  C )  C_  ( B  o.  C ) )
 
Theoremcoss2 4741 Subclass theorem for composition. (Contributed by NM, 5-Apr-2013.)
 |-  ( A  C_  B  ->  ( C  o.  A )  C_  ( C  o.  B ) )
 
Theoremcoeq1 4742 Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.)
 |-  ( A  =  B  ->  ( A  o.  C )  =  ( B  o.  C ) )
 
Theoremcoeq2 4743 Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.)
 |-  ( A  =  B  ->  ( C  o.  A )  =  ( C  o.  B ) )
 
Theoremcoeq1i 4744 Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.)
 |-  A  =  B   =>    |-  ( A  o.  C )  =  ( B  o.  C )
 
Theoremcoeq2i 4745 Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.)
 |-  A  =  B   =>    |-  ( C  o.  A )  =  ( C  o.  B )
 
Theoremcoeq1d 4746 Equality deduction for composition of two classes. (Contributed by NM, 16-Nov-2000.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( A  o.  C )  =  ( B  o.  C ) )
 
Theoremcoeq2d 4747 Equality deduction for composition of two classes. (Contributed by NM, 16-Nov-2000.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( C  o.  A )  =  ( C  o.  B ) )
 
Theoremcoeq12i 4748 Equality inference for composition of two classes. (Contributed by FL, 7-Jun-2012.)
 |-  A  =  B   &    |-  C  =  D   =>    |-  ( A  o.  C )  =  ( B  o.  D )
 
Theoremcoeq12d 4749 Equality deduction for composition of two classes. (Contributed by FL, 7-Jun-2012.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C  =  D )   =>    |-  ( ph  ->  ( A  o.  C )  =  ( B  o.  D ) )
 
Theoremnfco 4750 Bound-variable hypothesis builder for function value. (Contributed by NM, 1-Sep-1999.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/_ x ( A  o.  B )
 
Theoremelco 4751* Elements of a composed relation. (Contributed by BJ, 10-Jul-2022.)
 |-  ( A  e.  ( R  o.  S )  <->  E. x E. y E. z ( A  =  <. x ,  z >.  /\  ( x S y 
 /\  y R z ) ) )
 
Theorembrcog 4752* Ordered pair membership in a composition. (Contributed by NM, 24-Feb-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A ( C  o.  D ) B  <->  E. x ( A D x  /\  x C B ) ) )
 
Theoremopelco2g 4753* Ordered pair membership in a composition. (Contributed by NM, 27-Jan-1997.) (Revised by Mario Carneiro, 24-Feb-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  e.  ( C  o.  D )  <->  E. x ( <. A ,  x >.  e.  D  /\  <. x ,  B >.  e.  C ) ) )
 
Theorembrcogw 4754 Ordered pair membership in a composition. (Contributed by Thierry Arnoux, 14-Jan-2018.)
 |-  ( ( ( A  e.  V  /\  B  e.  W  /\  X  e.  Z )  /\  ( A D X  /\  X C B ) )  ->  A ( C  o.  D ) B )
 
Theoremeqbrrdva 4755* Deduction from extensionality principle for relations, given an equivalence only on the relation's domain and range. (Contributed by Thierry Arnoux, 28-Nov-2017.)
 |-  ( ph  ->  A  C_  ( C  X.  D ) )   &    |-  ( ph  ->  B 
 C_  ( C  X.  D ) )   &    |-  (
 ( ph  /\  x  e.  C  /\  y  e.  D )  ->  ( x A y  <->  x B y ) )   =>    |-  ( ph  ->  A  =  B )
 
Theorembrco 4756* Binary relation on a composition. (Contributed by NM, 21-Sep-2004.) (Revised by Mario Carneiro, 24-Feb-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A ( C  o.  D ) B  <->  E. x ( A D x  /\  x C B ) )
 
Theoremopelco 4757* Ordered pair membership in a composition. (Contributed by NM, 27-Dec-1996.) (Revised by Mario Carneiro, 24-Feb-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( <. A ,  B >.  e.  ( C  o.  D )  <->  E. x ( A D x  /\  x C B ) )
 
Theoremcnvss 4758 Subset theorem for converse. (Contributed by NM, 22-Mar-1998.)
 |-  ( A  C_  B  ->  `' A  C_  `' B )
 
Theoremcnveq 4759 Equality theorem for converse. (Contributed by NM, 13-Aug-1995.)
 |-  ( A  =  B  ->  `' A  =  `' B )
 
Theoremcnveqi 4760 Equality inference for converse. (Contributed by NM, 23-Dec-2008.)
 |-  A  =  B   =>    |-  `' A  =  `' B
 
Theoremcnveqd 4761 Equality deduction for converse. (Contributed by NM, 6-Dec-2013.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  `' A  =  `' B )
 
Theoremelcnv 4762* Membership in a converse. Equation 5 of [Suppes] p. 62. (Contributed by NM, 24-Mar-1998.)
 |-  ( A  e.  `' R 
 <-> 
 E. x E. y
 ( A  =  <. x ,  y >.  /\  y R x ) )
 
Theoremelcnv2 4763* Membership in a converse. Equation 5 of [Suppes] p. 62. (Contributed by NM, 11-Aug-2004.)
 |-  ( A  e.  `' R 
 <-> 
 E. x E. y
 ( A  =  <. x ,  y >.  /\  <. y ,  x >.  e.  R ) )
 
Theoremnfcnv 4764 Bound-variable hypothesis builder for converse. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  F/_ x A   =>    |-  F/_ x `' A
 
Theoremopelcnvg 4765 Ordered-pair membership in converse. (Contributed by NM, 13-May-1999.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( <. A ,  B >.  e.  `' R  <->  <. B ,  A >.  e.  R ) )
 
Theorembrcnvg 4766 The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 10-Oct-2005.)
 |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A `' R B  <->  B R A ) )
 
Theoremopelcnv 4767 Ordered-pair membership in converse. (Contributed by NM, 13-Aug-1995.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( <. A ,  B >.  e.  `' R  <->  <. B ,  A >.  e.  R )
 
Theorembrcnv 4768 The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 13-Aug-1995.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A `' R B 
 <->  B R A )
 
Theoremcsbcnvg 4769 Move class substitution in and out of the converse of a function. (Contributed by Thierry Arnoux, 8-Feb-2017.)
 |-  ( A  e.  V  ->  `' [_ A  /  x ]_ F  =  [_ A  /  x ]_ `' F )
 
Theoremcnvco 4770 Distributive law of converse over class composition. Theorem 26 of [Suppes] p. 64. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  `' ( A  o.  B )  =  ( `' B  o.  `' A )
 
Theoremcnvuni 4771* The converse of a class union is the (indexed) union of the converses of its members. (Contributed by NM, 11-Aug-2004.)
 |-  `' U. A  =  U_ x  e.  A  `' x
 
Theoremdfdm3 4772* Alternate definition of domain. Definition 6.5(1) of [TakeutiZaring] p. 24. (Contributed by NM, 28-Dec-1996.)
 |- 
 dom  A  =  { x  |  E. y <. x ,  y >.  e.  A }
 
Theoremdfrn2 4773* Alternate definition of range. Definition 4 of [Suppes] p. 60. (Contributed by NM, 27-Dec-1996.)
 |- 
 ran  A  =  {
 y  |  E. x  x A y }
 
Theoremdfrn3 4774* Alternate definition of range. Definition 6.5(2) of [TakeutiZaring] p. 24. (Contributed by NM, 28-Dec-1996.)
 |- 
 ran  A  =  {
 y  |  E. x <. x ,  y >.  e.  A }
 
Theoremelrn2g 4775* Membership in a range. (Contributed by Scott Fenton, 2-Feb-2011.)
 |-  ( A  e.  V  ->  ( A  e.  ran  B  <->  E. x <. x ,  A >.  e.  B ) )
 
Theoremelrng 4776* Membership in a range. (Contributed by Scott Fenton, 2-Feb-2011.)
 |-  ( A  e.  V  ->  ( A  e.  ran  B  <->  E. x  x B A ) )
 
Theoremdfdm4 4777 Alternate definition of domain. (Contributed by NM, 28-Dec-1996.)
 |- 
 dom  A  =  ran  `' A
 
Theoremdfdmf 4778* Definition of domain, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ y A   =>    |-  dom  A  =  { x  |  E. y  x A y }
 
Theoremcsbdmg 4779 Distribute proper substitution through the domain of a class. (Contributed by Jim Kingdon, 8-Dec-2018.)
 |-  ( A  e.  V  -> 
 [_ A  /  x ]_
 dom  B  =  dom  [_ A  /  x ]_ B )
 
Theoremeldmg 4780* Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by Mario Carneiro, 9-Jul-2014.)
 |-  ( A  e.  V  ->  ( A  e.  dom  B  <->  E. y  A B y ) )
 
Theoremeldm2g 4781* Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 27-Jan-1997.) (Revised by Mario Carneiro, 9-Jul-2014.)
 |-  ( A  e.  V  ->  ( A  e.  dom  B  <->  E. y <. A ,  y >.  e.  B ) )
 
Theoremeldm 4782* Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 2-Apr-2004.)
 |-  A  e.  _V   =>    |-  ( A  e.  dom 
 B 
 <-> 
 E. y  A B y )
 
Theoremeldm2 4783* Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 1-Aug-1994.)
 |-  A  e.  _V   =>    |-  ( A  e.  dom 
 B 
 <-> 
 E. y <. A ,  y >.  e.  B )
 
Theoremdmss 4784 Subset theorem for domain. (Contributed by NM, 11-Aug-1994.)
 |-  ( A  C_  B  ->  dom  A  C_  dom  B )
 
Theoremdmeq 4785 Equality theorem for domain. (Contributed by NM, 11-Aug-1994.)
 |-  ( A  =  B  ->  dom  A  =  dom  B )
 
Theoremdmeqi 4786 Equality inference for domain. (Contributed by NM, 4-Mar-2004.)
 |-  A  =  B   =>    |-  dom  A  =  dom  B
 
Theoremdmeqd 4787 Equality deduction for domain. (Contributed by NM, 4-Mar-2004.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  dom  A  =  dom  B )
 
Theoremopeldm 4788 Membership of first of an ordered pair in a domain. (Contributed by NM, 30-Jul-1995.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( <. A ,  B >.  e.  C  ->  A  e.  dom  C )
 
Theorembreldm 4789 Membership of first of a binary relation in a domain. (Contributed by NM, 30-Jul-1995.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A R B  ->  A  e.  dom  R )
 
Theoremopeldmg 4790 Membership of first of an ordered pair in a domain. (Contributed by Jim Kingdon, 9-Jul-2019.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  e.  C  ->  A  e.  dom  C )
 )
 
Theorembreldmg 4791 Membership of first of a binary relation in a domain. (Contributed by NM, 21-Mar-2007.)
 |-  ( ( A  e.  C  /\  B  e.  D  /\  A R B ) 
 ->  A  e.  dom  R )
 
Theoremdmun 4792 The domain of a union is the union of domains. Exercise 56(a) of [Enderton] p. 65. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |- 
 dom  ( A  u.  B )  =  ( dom  A  u.  dom  B )
 
Theoremdmin 4793 The domain of an intersection belong to the intersection of domains. Theorem 6 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.)
 |- 
 dom  ( A  i^i  B )  C_  ( dom  A  i^i  dom  B )
 
Theoremdmiun 4794 The domain of an indexed union. (Contributed by Mario Carneiro, 26-Apr-2016.)
 |- 
 dom  U_ x  e.  A  B  =  U_ x  e.  A  dom  B
 
Theoremdmuni 4795* The domain of a union. Part of Exercise 8 of [Enderton] p. 41. (Contributed by NM, 3-Feb-2004.)
 |- 
 dom  U. A  =  U_ x  e.  A  dom  x
 
Theoremdmopab 4796* The domain of a class of ordered pairs. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 4-Dec-2016.)
 |- 
 dom  { <. x ,  y >.  |  ph }  =  { x  |  E. y ph }
 
Theoremdmopabss 4797* Upper bound for the domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004.)
 |- 
 dom  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  C_  A
 
Theoremdmopab3 4798* The domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004.)
 |-  ( A. x  e.  A  E. y ph  <->  dom  {
 <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  =  A )
 
Theoremdm0 4799 The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |- 
 dom  (/)  =  (/)
 
Theoremdmi 4800 The domain of the identity relation is the universe. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |- 
 dom  _I  =  _V
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13639
  Copyright terms: Public domain < Previous  Next >