ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relsnop Unicode version

Theorem relsnop 4750
Description: A singleton of an ordered pair is a relation. (Contributed by NM, 17-May-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
relsn.1  |-  A  e. 
_V
relsnop.2  |-  B  e. 
_V
Assertion
Ref Expression
relsnop  |-  Rel  { <. A ,  B >. }

Proof of Theorem relsnop
StepHypRef Expression
1 relsn.1 . . 3  |-  A  e. 
_V
2 relsnop.2 . . 3  |-  B  e. 
_V
31, 2opelvv 4694 . 2  |-  <. A ,  B >.  e.  ( _V 
X.  _V )
41, 2opex 4247 . . 3  |-  <. A ,  B >.  e.  _V
54relsn 4749 . 2  |-  ( Rel 
{ <. A ,  B >. }  <->  <. A ,  B >.  e.  ( _V  X.  _V ) )
63, 5mpbir 146 1  |-  Rel  { <. A ,  B >. }
Colors of variables: wff set class
Syntax hints:    e. wcel 2160   _Vcvv 2752   {csn 3607   <.cop 3610    X. cxp 4642   Rel wrel 4649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-opab 4080  df-xp 4650  df-rel 4651
This theorem is referenced by:  cnvsn  5129  fsn  5709
  Copyright terms: Public domain W3C validator