| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snss | Unicode version | ||
| Description: The singleton of an element of a class is a subset of the class (inference form of snssg 3767). Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 21-Jun-1993.) (Proof shortened by BJ, 1-Jan-2025.) |
| Ref | Expression |
|---|---|
| snss.1 |
|
| Ref | Expression |
|---|---|
| snss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snss.1 |
. 2
| |
| 2 | snssg 3767 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 df-ss 3179 df-sn 3639 |
| This theorem is referenced by: snssgOLD 3769 prss 3789 tpss 3799 snelpw 4257 sspwb 4260 mss 4270 exss 4271 reg2exmidlema 4582 elomssom 4653 relsn 4780 fnressn 5770 un0mulcl 9329 nn0ssz 9390 fimaxre2 11538 fsum2dlemstep 11745 fsumabs 11776 fsumiun 11788 fprod2dlemstep 11933 dvmptfsum 15197 elply2 15207 elplyd 15213 ply1term 15215 plymullem 15222 bdsnss 15809 |
| Copyright terms: Public domain | W3C validator |