![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > snss | Unicode version |
Description: The singleton of an element of a class is a subset of the class (inference form of snssg 3727). Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 21-Jun-1993.) (Proof shortened by BJ, 1-Jan-2025.) |
Ref | Expression |
---|---|
snss.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
snss |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snss.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | snssg 3727 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2740 df-in 3136 df-ss 3143 df-sn 3599 |
This theorem is referenced by: snssgOLD 3729 prss 3749 tpss 3759 snelpw 4214 sspwb 4217 mss 4227 exss 4228 reg2exmidlema 4534 elomssom 4605 relsn 4732 fnressn 5703 un0mulcl 9210 nn0ssz 9271 fimaxre2 11235 fsum2dlemstep 11442 fsumabs 11473 fsumiun 11485 fprod2dlemstep 11630 bdsnss 14628 |
Copyright terms: Public domain | W3C validator |