| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snss | Unicode version | ||
| Description: The singleton of an element of a class is a subset of the class (inference form of snssg 3767). Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 21-Jun-1993.) (Proof shortened by BJ, 1-Jan-2025.) |
| Ref | Expression |
|---|---|
| snss.1 |
|
| Ref | Expression |
|---|---|
| snss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snss.1 |
. 2
| |
| 2 | snssg 3767 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 df-ss 3179 df-sn 3639 |
| This theorem is referenced by: snssgOLD 3769 prss 3789 tpss 3799 snelpw 4258 sspwb 4261 mss 4271 exss 4272 reg2exmidlema 4583 elomssom 4654 relsn 4781 fnressn 5772 un0mulcl 9331 nn0ssz 9392 fimaxre2 11571 fsum2dlemstep 11778 fsumabs 11809 fsumiun 11821 fprod2dlemstep 11966 dvmptfsum 15230 elply2 15240 elplyd 15246 ply1term 15248 plymullem 15255 bdsnss 15846 |
| Copyright terms: Public domain | W3C validator |