![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > snss | Unicode version |
Description: The singleton of an element of a class is a subset of the class (inference form of snssg 3752). Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 21-Jun-1993.) (Proof shortened by BJ, 1-Jan-2025.) |
Ref | Expression |
---|---|
snss.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
snss |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snss.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | snssg 3752 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3159 df-ss 3166 df-sn 3624 |
This theorem is referenced by: snssgOLD 3754 prss 3774 tpss 3784 snelpw 4242 sspwb 4245 mss 4255 exss 4256 reg2exmidlema 4566 elomssom 4637 relsn 4764 fnressn 5744 un0mulcl 9274 nn0ssz 9335 fimaxre2 11370 fsum2dlemstep 11577 fsumabs 11608 fsumiun 11620 fprod2dlemstep 11765 elply2 14881 elplyd 14887 ply1term 14889 plymullem 14896 bdsnss 15365 |
Copyright terms: Public domain | W3C validator |