| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snss | Unicode version | ||
| Description: The singleton of an element of a class is a subset of the class (inference form of snssg 3802). Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 21-Jun-1993.) (Proof shortened by BJ, 1-Jan-2025.) |
| Ref | Expression |
|---|---|
| snss.1 |
|
| Ref | Expression |
|---|---|
| snss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snss.1 |
. 2
| |
| 2 | snssg 3802 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 df-sn 3672 |
| This theorem is referenced by: snssgOLD 3804 prss 3824 tpss 3836 snelpw 4298 sspwb 4302 mss 4312 exss 4313 reg2exmidlema 4626 elomssom 4697 relsn 4824 fnressn 5825 un0mulcl 9403 nn0ssz 9464 fimaxre2 11738 fsum2dlemstep 11945 fsumabs 11976 fsumiun 11988 fprod2dlemstep 12133 dvmptfsum 15399 elply2 15409 elplyd 15415 ply1term 15417 plymullem 15424 bdsnss 16236 |
| Copyright terms: Public domain | W3C validator |