Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snss | Unicode version |
Description: The singleton of an element of a class is a subset of the class. Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
snss.1 |
Ref | Expression |
---|---|
snss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | velsn 3593 | . . . 4 | |
2 | 1 | imbi1i 237 | . . 3 |
3 | 2 | albii 1458 | . 2 |
4 | dfss2 3131 | . 2 | |
5 | snss.1 | . . 3 | |
6 | 5 | clel2 2859 | . 2 |
7 | 3, 4, 6 | 3bitr4ri 212 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1341 wceq 1343 wcel 2136 cvv 2726 wss 3116 csn 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 df-ss 3129 df-sn 3582 |
This theorem is referenced by: snssg 3709 prss 3729 tpss 3738 snelpw 4191 sspwb 4194 mss 4204 exss 4205 reg2exmidlema 4511 elomssom 4582 relsn 4709 fnressn 5671 un0mulcl 9148 nn0ssz 9209 fimaxre2 11168 fsum2dlemstep 11375 fsumabs 11406 fsumiun 11418 fprod2dlemstep 11563 bdsnss 13765 |
Copyright terms: Public domain | W3C validator |