![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > snss | Unicode version |
Description: The singleton of an element of a class is a subset of the class (inference form of snssg 3753). Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 21-Jun-1993.) (Proof shortened by BJ, 1-Jan-2025.) |
Ref | Expression |
---|---|
snss.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
snss |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snss.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | snssg 3753 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3160 df-ss 3167 df-sn 3625 |
This theorem is referenced by: snssgOLD 3755 prss 3775 tpss 3785 snelpw 4243 sspwb 4246 mss 4256 exss 4257 reg2exmidlema 4567 elomssom 4638 relsn 4765 fnressn 5745 un0mulcl 9277 nn0ssz 9338 fimaxre2 11373 fsum2dlemstep 11580 fsumabs 11611 fsumiun 11623 fprod2dlemstep 11768 dvmptfsum 14904 elply2 14914 elplyd 14920 ply1term 14922 plymullem 14929 bdsnss 15435 |
Copyright terms: Public domain | W3C validator |