ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snss Unicode version

Theorem snss 3728
Description: The singleton of an element of a class is a subset of the class (inference form of snssg 3727). Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 21-Jun-1993.) (Proof shortened by BJ, 1-Jan-2025.)
Hypothesis
Ref Expression
snss.1  |-  A  e. 
_V
Assertion
Ref Expression
snss  |-  ( A  e.  B  <->  { A }  C_  B )

Proof of Theorem snss
StepHypRef Expression
1 snss.1 . 2  |-  A  e. 
_V
2 snssg 3727 . 2  |-  ( A  e.  _V  ->  ( A  e.  B  <->  { A }  C_  B ) )
31, 2ax-mp 5 1  |-  ( A  e.  B  <->  { A }  C_  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2148   _Vcvv 2738    C_ wss 3130   {csn 3593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-in 3136  df-ss 3143  df-sn 3599
This theorem is referenced by:  snssgOLD  3729  prss  3749  tpss  3759  snelpw  4214  sspwb  4217  mss  4227  exss  4228  reg2exmidlema  4534  elomssom  4605  relsn  4732  fnressn  5703  un0mulcl  9210  nn0ssz  9271  fimaxre2  11235  fsum2dlemstep  11442  fsumabs  11473  fsumiun  11485  fprod2dlemstep  11630  bdsnss  14628
  Copyright terms: Public domain W3C validator