ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snss Unicode version

Theorem snss 3617
Description: The singleton of an element of a class is a subset of the class. Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
snss.1  |-  A  e. 
_V
Assertion
Ref Expression
snss  |-  ( A  e.  B  <->  { A }  C_  B )

Proof of Theorem snss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 velsn 3512 . . . 4  |-  ( x  e.  { A }  <->  x  =  A )
21imbi1i 237 . . 3  |-  ( ( x  e.  { A }  ->  x  e.  B
)  <->  ( x  =  A  ->  x  e.  B ) )
32albii 1429 . 2  |-  ( A. x ( x  e. 
{ A }  ->  x  e.  B )  <->  A. x
( x  =  A  ->  x  e.  B
) )
4 dfss2 3054 . 2  |-  ( { A }  C_  B  <->  A. x ( x  e. 
{ A }  ->  x  e.  B ) )
5 snss.1 . . 3  |-  A  e. 
_V
65clel2 2790 . 2  |-  ( A  e.  B  <->  A. x
( x  =  A  ->  x  e.  B
) )
73, 4, 63bitr4ri 212 1  |-  ( A  e.  B  <->  { A }  C_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1312    = wceq 1314    e. wcel 1463   _Vcvv 2658    C_ wss 3039   {csn 3495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-v 2660  df-in 3045  df-ss 3052  df-sn 3501
This theorem is referenced by:  snssg  3624  prss  3644  tpss  3653  snelpw  4103  sspwb  4106  mss  4116  exss  4117  reg2exmidlema  4417  elnn  4487  relsn  4612  fnressn  5572  un0mulcl  8962  nn0ssz  9023  fimaxre2  10938  fsum2dlemstep  11143  fsumabs  11174  fsumiun  11186  bdsnss  12873
  Copyright terms: Public domain W3C validator