| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snss | Unicode version | ||
| Description: The singleton of an element of a class is a subset of the class (inference form of snssg 3778). Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 21-Jun-1993.) (Proof shortened by BJ, 1-Jan-2025.) |
| Ref | Expression |
|---|---|
| snss.1 |
|
| Ref | Expression |
|---|---|
| snss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snss.1 |
. 2
| |
| 2 | snssg 3778 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-in 3180 df-ss 3187 df-sn 3649 |
| This theorem is referenced by: snssgOLD 3780 prss 3800 tpss 3812 snelpw 4274 sspwb 4278 mss 4288 exss 4289 reg2exmidlema 4600 elomssom 4671 relsn 4798 fnressn 5793 un0mulcl 9364 nn0ssz 9425 fimaxre2 11653 fsum2dlemstep 11860 fsumabs 11891 fsumiun 11903 fprod2dlemstep 12048 dvmptfsum 15312 elply2 15322 elplyd 15328 ply1term 15330 plymullem 15337 bdsnss 16008 |
| Copyright terms: Public domain | W3C validator |