ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  repizf Unicode version

Theorem repizf 4149
Description: Axiom of Replacement. Axiom 7' of [Crosilla], p. "Axioms of CZF and IZF" (with unnecessary quantifier removed). In our context this is not an axiom, but a theorem proved from ax-coll 4148. It is identical to zfrep6 4150 except for the choice of a freeness hypothesis rather than a disjoint variable condition between  b and  ph. (Contributed by Jim Kingdon, 23-Aug-2018.)
Hypothesis
Ref Expression
ax-coll.1  |-  F/ b
ph
Assertion
Ref Expression
repizf  |-  ( A. x  e.  a  E! y ph  ->  E. b A. x  e.  a  E. y  e.  b  ph )
Distinct variable group:    x, y, a, b
Allowed substitution hints:    ph( x, y, a, b)

Proof of Theorem repizf
StepHypRef Expression
1 euex 2075 . . 3  |-  ( E! y ph  ->  E. y ph )
21ralimi 2560 . 2  |-  ( A. x  e.  a  E! y ph  ->  A. x  e.  a  E. y ph )
3 ax-coll.1 . . 3  |-  F/ b
ph
43ax-coll 4148 . 2  |-  ( A. x  e.  a  E. y ph  ->  E. b A. x  e.  a  E. y  e.  b  ph )
52, 4syl 14 1  |-  ( A. x  e.  a  E! y ph  ->  E. b A. x  e.  a  E. y  e.  b  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   F/wnf 1474   E.wex 1506   E!weu 2045   A.wral 2475   E.wrex 2476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-coll 4148
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-eu 2048  df-ral 2480
This theorem is referenced by:  zfrep6  4150  repizf2  4195
  Copyright terms: Public domain W3C validator