![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > repizf | GIF version |
Description: Axiom of Replacement. Axiom 7' of [Crosilla], p. "Axioms of CZF and IZF" (with unnecessary quantifier removed). In our context this is not an axiom, but a theorem proved from ax-coll 4120. It is identical to zfrep6 4122 except for the choice of a freeness hypothesis rather than a disjoint variable condition between 𝑏 and 𝜑. (Contributed by Jim Kingdon, 23-Aug-2018.) |
Ref | Expression |
---|---|
ax-coll.1 | ⊢ Ⅎ𝑏𝜑 |
Ref | Expression |
---|---|
repizf | ⊢ (∀𝑥 ∈ 𝑎 ∃!𝑦𝜑 → ∃𝑏∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euex 2056 | . . 3 ⊢ (∃!𝑦𝜑 → ∃𝑦𝜑) | |
2 | 1 | ralimi 2540 | . 2 ⊢ (∀𝑥 ∈ 𝑎 ∃!𝑦𝜑 → ∀𝑥 ∈ 𝑎 ∃𝑦𝜑) |
3 | ax-coll.1 | . . 3 ⊢ Ⅎ𝑏𝜑 | |
4 | 3 | ax-coll 4120 | . 2 ⊢ (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑) |
5 | 2, 4 | syl 14 | 1 ⊢ (∀𝑥 ∈ 𝑎 ∃!𝑦𝜑 → ∃𝑏∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Ⅎwnf 1460 ∃wex 1492 ∃!weu 2026 ∀wral 2455 ∃wrex 2456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-coll 4120 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 df-eu 2029 df-ral 2460 |
This theorem is referenced by: zfrep6 4122 repizf2 4164 |
Copyright terms: Public domain | W3C validator |