ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  repizf GIF version

Theorem repizf 4200
Description: Axiom of Replacement. Axiom 7' of [Crosilla], p. "Axioms of CZF and IZF" (with unnecessary quantifier removed). In our context this is not an axiom, but a theorem proved from ax-coll 4199. It is identical to zfrep6 4201 except for the choice of a freeness hypothesis rather than a disjoint variable condition between 𝑏 and 𝜑. (Contributed by Jim Kingdon, 23-Aug-2018.)
Hypothesis
Ref Expression
ax-coll.1 𝑏𝜑
Assertion
Ref Expression
repizf (∀𝑥𝑎 ∃!𝑦𝜑 → ∃𝑏𝑥𝑎𝑦𝑏 𝜑)
Distinct variable group:   𝑥,𝑦,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem repizf
StepHypRef Expression
1 euex 2107 . . 3 (∃!𝑦𝜑 → ∃𝑦𝜑)
21ralimi 2593 . 2 (∀𝑥𝑎 ∃!𝑦𝜑 → ∀𝑥𝑎𝑦𝜑)
3 ax-coll.1 . . 3 𝑏𝜑
43ax-coll 4199 . 2 (∀𝑥𝑎𝑦𝜑 → ∃𝑏𝑥𝑎𝑦𝑏 𝜑)
52, 4syl 14 1 (∀𝑥𝑎 ∃!𝑦𝜑 → ∃𝑏𝑥𝑎𝑦𝑏 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wnf 1506  wex 1538  ∃!weu 2077  wral 2508  wrex 2509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-coll 4199
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-eu 2080  df-ral 2513
This theorem is referenced by:  zfrep6  4201  repizf2  4246
  Copyright terms: Public domain W3C validator