![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > repizf | GIF version |
Description: Axiom of Replacement. Axiom 7' of [Crosilla], p. "Axioms of CZF and IZF" (with unnecessary quantifier removed). In our context this is not an axiom, but a theorem proved from ax-coll 4144. It is identical to zfrep6 4146 except for the choice of a freeness hypothesis rather than a disjoint variable condition between 𝑏 and 𝜑. (Contributed by Jim Kingdon, 23-Aug-2018.) |
Ref | Expression |
---|---|
ax-coll.1 | ⊢ Ⅎ𝑏𝜑 |
Ref | Expression |
---|---|
repizf | ⊢ (∀𝑥 ∈ 𝑎 ∃!𝑦𝜑 → ∃𝑏∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euex 2072 | . . 3 ⊢ (∃!𝑦𝜑 → ∃𝑦𝜑) | |
2 | 1 | ralimi 2557 | . 2 ⊢ (∀𝑥 ∈ 𝑎 ∃!𝑦𝜑 → ∀𝑥 ∈ 𝑎 ∃𝑦𝜑) |
3 | ax-coll.1 | . . 3 ⊢ Ⅎ𝑏𝜑 | |
4 | 3 | ax-coll 4144 | . 2 ⊢ (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑) |
5 | 2, 4 | syl 14 | 1 ⊢ (∀𝑥 ∈ 𝑎 ∃!𝑦𝜑 → ∃𝑏∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Ⅎwnf 1471 ∃wex 1503 ∃!weu 2042 ∀wral 2472 ∃wrex 2473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-coll 4144 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-eu 2045 df-ral 2477 |
This theorem is referenced by: zfrep6 4146 repizf2 4191 |
Copyright terms: Public domain | W3C validator |