| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > repizf | GIF version | ||
| Description: Axiom of Replacement. Axiom 7' of [Crosilla], p. "Axioms of CZF and IZF" (with unnecessary quantifier removed). In our context this is not an axiom, but a theorem proved from ax-coll 4159. It is identical to zfrep6 4161 except for the choice of a freeness hypothesis rather than a disjoint variable condition between 𝑏 and 𝜑. (Contributed by Jim Kingdon, 23-Aug-2018.) |
| Ref | Expression |
|---|---|
| ax-coll.1 | ⊢ Ⅎ𝑏𝜑 |
| Ref | Expression |
|---|---|
| repizf | ⊢ (∀𝑥 ∈ 𝑎 ∃!𝑦𝜑 → ∃𝑏∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euex 2084 | . . 3 ⊢ (∃!𝑦𝜑 → ∃𝑦𝜑) | |
| 2 | 1 | ralimi 2569 | . 2 ⊢ (∀𝑥 ∈ 𝑎 ∃!𝑦𝜑 → ∀𝑥 ∈ 𝑎 ∃𝑦𝜑) |
| 3 | ax-coll.1 | . . 3 ⊢ Ⅎ𝑏𝜑 | |
| 4 | 3 | ax-coll 4159 | . 2 ⊢ (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑) |
| 5 | 2, 4 | syl 14 | 1 ⊢ (∀𝑥 ∈ 𝑎 ∃!𝑦𝜑 → ∃𝑏∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Ⅎwnf 1483 ∃wex 1515 ∃!weu 2054 ∀wral 2484 ∃wrex 2485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-coll 4159 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-eu 2057 df-ral 2489 |
| This theorem is referenced by: zfrep6 4161 repizf2 4206 |
| Copyright terms: Public domain | W3C validator |