| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > repizf | GIF version | ||
| Description: Axiom of Replacement. Axiom 7' of [Crosilla], p. "Axioms of CZF and IZF" (with unnecessary quantifier removed). In our context this is not an axiom, but a theorem proved from ax-coll 4175. It is identical to zfrep6 4177 except for the choice of a freeness hypothesis rather than a disjoint variable condition between 𝑏 and 𝜑. (Contributed by Jim Kingdon, 23-Aug-2018.) |
| Ref | Expression |
|---|---|
| ax-coll.1 | ⊢ Ⅎ𝑏𝜑 |
| Ref | Expression |
|---|---|
| repizf | ⊢ (∀𝑥 ∈ 𝑎 ∃!𝑦𝜑 → ∃𝑏∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euex 2085 | . . 3 ⊢ (∃!𝑦𝜑 → ∃𝑦𝜑) | |
| 2 | 1 | ralimi 2571 | . 2 ⊢ (∀𝑥 ∈ 𝑎 ∃!𝑦𝜑 → ∀𝑥 ∈ 𝑎 ∃𝑦𝜑) |
| 3 | ax-coll.1 | . . 3 ⊢ Ⅎ𝑏𝜑 | |
| 4 | 3 | ax-coll 4175 | . 2 ⊢ (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑) |
| 5 | 2, 4 | syl 14 | 1 ⊢ (∀𝑥 ∈ 𝑎 ∃!𝑦𝜑 → ∃𝑏∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Ⅎwnf 1484 ∃wex 1516 ∃!weu 2055 ∀wral 2486 ∃wrex 2487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-coll 4175 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-eu 2058 df-ral 2491 |
| This theorem is referenced by: zfrep6 4177 repizf2 4222 |
| Copyright terms: Public domain | W3C validator |