![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > repizf | GIF version |
Description: Axiom of Replacement. Axiom 7' of [Crosilla], p. "Axioms of CZF and IZF" (with unnecessary quantifier removed). In our context this is not an axiom, but a theorem proved from ax-coll 3983. It is identical to zfrep6 3985 except for the choice of a freeness hypothesis rather than a distinct variable constraint between 𝑏 and 𝜑. (Contributed by Jim Kingdon, 23-Aug-2018.) |
Ref | Expression |
---|---|
ax-coll.1 | ⊢ Ⅎ𝑏𝜑 |
Ref | Expression |
---|---|
repizf | ⊢ (∀𝑥 ∈ 𝑎 ∃!𝑦𝜑 → ∃𝑏∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euex 1990 | . . 3 ⊢ (∃!𝑦𝜑 → ∃𝑦𝜑) | |
2 | 1 | ralimi 2454 | . 2 ⊢ (∀𝑥 ∈ 𝑎 ∃!𝑦𝜑 → ∀𝑥 ∈ 𝑎 ∃𝑦𝜑) |
3 | ax-coll.1 | . . 3 ⊢ Ⅎ𝑏𝜑 | |
4 | 3 | ax-coll 3983 | . 2 ⊢ (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑) |
5 | 2, 4 | syl 14 | 1 ⊢ (∀𝑥 ∈ 𝑎 ∃!𝑦𝜑 → ∃𝑏∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Ⅎwnf 1404 ∃wex 1436 ∃!weu 1960 ∀wral 2375 ∃wrex 2376 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-coll 3983 |
This theorem depends on definitions: df-bi 116 df-nf 1405 df-sb 1704 df-eu 1963 df-ral 2380 |
This theorem is referenced by: zfrep6 3985 repizf2 4026 |
Copyright terms: Public domain | W3C validator |