ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reseq12i Unicode version

Theorem reseq12i 5002
Description: Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.)
Hypotheses
Ref Expression
reseqi.1  |-  A  =  B
reseqi.2  |-  C  =  D
Assertion
Ref Expression
reseq12i  |-  ( A  |`  C )  =  ( B  |`  D )

Proof of Theorem reseq12i
StepHypRef Expression
1 reseqi.1 . . 3  |-  A  =  B
21reseq1i 5000 . 2  |-  ( A  |`  C )  =  ( B  |`  C )
3 reseqi.2 . . 3  |-  C  =  D
43reseq2i 5001 . 2  |-  ( B  |`  C )  =  ( B  |`  D )
52, 4eqtri 2250 1  |-  ( A  |`  C )  =  ( B  |`  D )
Colors of variables: wff set class
Syntax hints:    = wceq 1395    |` cres 4720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-opab 4145  df-xp 4724  df-res 4730
This theorem is referenced by:  cnvresid  5394
  Copyright terms: Public domain W3C validator