ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reseq12i Unicode version

Theorem reseq12i 4920
Description: Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.)
Hypotheses
Ref Expression
reseqi.1  |-  A  =  B
reseqi.2  |-  C  =  D
Assertion
Ref Expression
reseq12i  |-  ( A  |`  C )  =  ( B  |`  D )

Proof of Theorem reseq12i
StepHypRef Expression
1 reseqi.1 . . 3  |-  A  =  B
21reseq1i 4918 . 2  |-  ( A  |`  C )  =  ( B  |`  C )
3 reseqi.2 . . 3  |-  C  =  D
43reseq2i 4919 . 2  |-  ( B  |`  C )  =  ( B  |`  D )
52, 4eqtri 2210 1  |-  ( A  |`  C )  =  ( B  |`  D )
Colors of variables: wff set class
Syntax hints:    = wceq 1364    |` cres 4643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-in 3150  df-opab 4080  df-xp 4647  df-res 4653
This theorem is referenced by:  cnvresid  5305
  Copyright terms: Public domain W3C validator