ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reseq12i Unicode version

Theorem reseq12i 4882
Description: Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.)
Hypotheses
Ref Expression
reseqi.1  |-  A  =  B
reseqi.2  |-  C  =  D
Assertion
Ref Expression
reseq12i  |-  ( A  |`  C )  =  ( B  |`  D )

Proof of Theorem reseq12i
StepHypRef Expression
1 reseqi.1 . . 3  |-  A  =  B
21reseq1i 4880 . 2  |-  ( A  |`  C )  =  ( B  |`  C )
3 reseqi.2 . . 3  |-  C  =  D
43reseq2i 4881 . 2  |-  ( B  |`  C )  =  ( B  |`  D )
52, 4eqtri 2186 1  |-  ( A  |`  C )  =  ( B  |`  D )
Colors of variables: wff set class
Syntax hints:    = wceq 1343    |` cres 4606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-opab 4044  df-xp 4610  df-res 4616
This theorem is referenced by:  cnvresid  5262
  Copyright terms: Public domain W3C validator