Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reseq1i | Unicode version |
Description: Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.) |
Ref | Expression |
---|---|
reseqi.1 |
Ref | Expression |
---|---|
reseq1i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseqi.1 | . 2 | |
2 | reseq1 4883 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1348 cres 4611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 df-res 4621 |
This theorem is referenced by: reseq12i 4887 resindm 4931 resmpt 4937 resmpt3 4938 resmptf 4939 opabresid 4942 rescnvcnv 5071 coires1 5126 fcoi1 5376 fvsnun1 5690 fvsnun2 5691 resoprab 5946 resmpo 5948 ofmres 6112 f1stres 6135 f2ndres 6136 df1st2 6195 df2nd2 6196 dftpos2 6237 tfr2a 6297 freccllem 6378 frecfcllem 6380 frecsuclem 6382 djuf1olemr 7027 divfnzn 9567 cnmptid 13034 xmsxmet2 13216 msmet2 13217 |
Copyright terms: Public domain | W3C validator |