Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reseq1i | Unicode version |
Description: Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.) |
Ref | Expression |
---|---|
reseqi.1 |
Ref | Expression |
---|---|
reseq1i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseqi.1 | . 2 | |
2 | reseq1 4885 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1348 cres 4613 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 df-res 4623 |
This theorem is referenced by: reseq12i 4889 resindm 4933 resmpt 4939 resmpt3 4940 resmptf 4941 opabresid 4944 rescnvcnv 5073 coires1 5128 fcoi1 5378 fvsnun1 5693 fvsnun2 5694 resoprab 5949 resmpo 5951 ofmres 6115 f1stres 6138 f2ndres 6139 df1st2 6198 df2nd2 6199 dftpos2 6240 tfr2a 6300 freccllem 6381 frecfcllem 6383 frecsuclem 6385 djuf1olemr 7031 divfnzn 9580 cnmptid 13075 xmsxmet2 13257 msmet2 13258 |
Copyright terms: Public domain | W3C validator |