| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reseq1i | Unicode version | ||
| Description: Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.) |
| Ref | Expression |
|---|---|
| reseqi.1 |
|
| Ref | Expression |
|---|---|
| reseq1i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseqi.1 |
. 2
| |
| 2 | reseq1 4952 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-in 3171 df-res 4686 |
| This theorem is referenced by: reseq12i 4956 resindm 5000 resmpt 5006 resmpt3 5007 resmptf 5008 opabresid 5011 rescnvcnv 5144 coires1 5199 fcoi1 5455 fvsnun1 5780 fvsnun2 5781 resoprab 6040 resmpo 6042 ofmres 6220 f1stres 6244 f2ndres 6245 df1st2 6304 df2nd2 6305 dftpos2 6346 tfr2a 6406 freccllem 6487 frecfcllem 6489 frecsuclem 6491 djuf1olemr 7155 divfnzn 9741 cnmptid 14724 xmsxmet2 14906 msmet2 14907 cnfldms 14979 |
| Copyright terms: Public domain | W3C validator |