![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reseq1i | Unicode version |
Description: Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.) |
Ref | Expression |
---|---|
reseqi.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
reseq1i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseqi.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | reseq1 4936 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3159 df-res 4671 |
This theorem is referenced by: reseq12i 4940 resindm 4984 resmpt 4990 resmpt3 4991 resmptf 4992 opabresid 4995 rescnvcnv 5128 coires1 5183 fcoi1 5434 fvsnun1 5755 fvsnun2 5756 resoprab 6014 resmpo 6016 ofmres 6188 f1stres 6212 f2ndres 6213 df1st2 6272 df2nd2 6273 dftpos2 6314 tfr2a 6374 freccllem 6455 frecfcllem 6457 frecsuclem 6459 djuf1olemr 7113 divfnzn 9686 cnmptid 14449 xmsxmet2 14631 msmet2 14632 |
Copyright terms: Public domain | W3C validator |