![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reseq1i | Unicode version |
Description: Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.) |
Ref | Expression |
---|---|
reseqi.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
reseq1i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseqi.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | reseq1 4919 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-v 2754 df-in 3150 df-res 4656 |
This theorem is referenced by: reseq12i 4923 resindm 4967 resmpt 4973 resmpt3 4974 resmptf 4975 opabresid 4978 rescnvcnv 5109 coires1 5164 fcoi1 5415 fvsnun1 5733 fvsnun2 5734 resoprab 5991 resmpo 5993 ofmres 6160 f1stres 6183 f2ndres 6184 df1st2 6243 df2nd2 6244 dftpos2 6285 tfr2a 6345 freccllem 6426 frecfcllem 6428 frecsuclem 6430 djuf1olemr 7082 divfnzn 9650 cnmptid 14233 xmsxmet2 14415 msmet2 14416 |
Copyright terms: Public domain | W3C validator |