ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reseq1i Unicode version

Theorem reseq1i 4880
Description: Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.)
Hypothesis
Ref Expression
reseqi.1  |-  A  =  B
Assertion
Ref Expression
reseq1i  |-  ( A  |`  C )  =  ( B  |`  C )

Proof of Theorem reseq1i
StepHypRef Expression
1 reseqi.1 . 2  |-  A  =  B
2 reseq1 4878 . 2  |-  ( A  =  B  ->  ( A  |`  C )  =  ( B  |`  C ) )
31, 2ax-mp 5 1  |-  ( A  |`  C )  =  ( B  |`  C )
Colors of variables: wff set class
Syntax hints:    = wceq 1343    |` cres 4606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-res 4616
This theorem is referenced by:  reseq12i  4882  resindm  4926  resmpt  4932  resmpt3  4933  resmptf  4934  opabresid  4937  rescnvcnv  5066  coires1  5121  fcoi1  5368  fvsnun1  5682  fvsnun2  5683  resoprab  5938  resmpo  5940  ofmres  6104  f1stres  6127  f2ndres  6128  df1st2  6187  df2nd2  6188  dftpos2  6229  tfr2a  6289  freccllem  6370  frecfcllem  6372  frecsuclem  6374  djuf1olemr  7019  divfnzn  9559  cnmptid  12921  xmsxmet2  13103  msmet2  13104
  Copyright terms: Public domain W3C validator