![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reseq1i | Unicode version |
Description: Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.) |
Ref | Expression |
---|---|
reseqi.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
reseq1i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseqi.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | reseq1 4937 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3160 df-res 4672 |
This theorem is referenced by: reseq12i 4941 resindm 4985 resmpt 4991 resmpt3 4992 resmptf 4993 opabresid 4996 rescnvcnv 5129 coires1 5184 fcoi1 5435 fvsnun1 5756 fvsnun2 5757 resoprab 6015 resmpo 6017 ofmres 6190 f1stres 6214 f2ndres 6215 df1st2 6274 df2nd2 6275 dftpos2 6316 tfr2a 6376 freccllem 6457 frecfcllem 6459 frecsuclem 6461 djuf1olemr 7115 divfnzn 9689 cnmptid 14460 xmsxmet2 14642 msmet2 14643 cnfldms 14715 |
Copyright terms: Public domain | W3C validator |