| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reseq1i | Unicode version | ||
| Description: Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.) |
| Ref | Expression |
|---|---|
| reseqi.1 |
|
| Ref | Expression |
|---|---|
| reseq1i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseqi.1 |
. 2
| |
| 2 | reseq1 4998 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-res 4730 |
| This theorem is referenced by: reseq12i 5002 resindm 5046 resmpt 5052 resmpt3 5053 resmptf 5054 opabresid 5057 rescnvcnv 5190 coires1 5245 fcoi1 5505 fvsnun1 5835 fvsnun2 5836 resoprab 6099 resmpo 6101 ofmres 6279 f1stres 6303 f2ndres 6304 df1st2 6363 df2nd2 6364 dftpos2 6405 tfr2a 6465 freccllem 6546 frecfcllem 6548 frecsuclem 6550 djuf1olemr 7217 divfnzn 9812 cnmptid 14949 xmsxmet2 15131 msmet2 15132 cnfldms 15204 |
| Copyright terms: Public domain | W3C validator |