| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reseq1i | Unicode version | ||
| Description: Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.) |
| Ref | Expression |
|---|---|
| reseqi.1 |
|
| Ref | Expression |
|---|---|
| reseq1i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseqi.1 |
. 2
| |
| 2 | reseq1 4941 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-res 4676 |
| This theorem is referenced by: reseq12i 4945 resindm 4989 resmpt 4995 resmpt3 4996 resmptf 4997 opabresid 5000 rescnvcnv 5133 coires1 5188 fcoi1 5439 fvsnun1 5760 fvsnun2 5761 resoprab 6019 resmpo 6021 ofmres 6194 f1stres 6218 f2ndres 6219 df1st2 6278 df2nd2 6279 dftpos2 6320 tfr2a 6380 freccllem 6461 frecfcllem 6463 frecsuclem 6465 djuf1olemr 7121 divfnzn 9697 cnmptid 14527 xmsxmet2 14709 msmet2 14710 cnfldms 14782 |
| Copyright terms: Public domain | W3C validator |