| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reseq1i | Unicode version | ||
| Description: Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.) |
| Ref | Expression |
|---|---|
| reseqi.1 |
|
| Ref | Expression |
|---|---|
| reseq1i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseqi.1 |
. 2
| |
| 2 | reseq1 4972 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-in 3180 df-res 4705 |
| This theorem is referenced by: reseq12i 4976 resindm 5020 resmpt 5026 resmpt3 5027 resmptf 5028 opabresid 5031 rescnvcnv 5164 coires1 5219 fcoi1 5478 fvsnun1 5804 fvsnun2 5805 resoprab 6064 resmpo 6066 ofmres 6244 f1stres 6268 f2ndres 6269 df1st2 6328 df2nd2 6329 dftpos2 6370 tfr2a 6430 freccllem 6511 frecfcllem 6513 frecsuclem 6515 djuf1olemr 7182 divfnzn 9777 cnmptid 14868 xmsxmet2 15050 msmet2 15051 cnfldms 15123 |
| Copyright terms: Public domain | W3C validator |