| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reseq2i | Unicode version | ||
| Description: Equality inference for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| reseqi.1 |
|
| Ref | Expression |
|---|---|
| reseq2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseqi.1 |
. 2
| |
| 2 | reseq2 4955 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 df-opab 4107 df-xp 4682 df-res 4688 |
| This theorem is referenced by: reseq12i 4958 rescom 4985 resdmdfsn 5003 rescnvcnv 5146 resdm2 5174 funcnvres 5348 funimaexg 5359 resdif 5546 frecfnom 6489 facnn 10874 fac0 10875 expcnv 11848 setsslid 12916 uptx 14779 txcn 14780 |
| Copyright terms: Public domain | W3C validator |