ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reseq2i Unicode version

Theorem reseq2i 4710
Description: Equality inference for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
reseqi.1  |-  A  =  B
Assertion
Ref Expression
reseq2i  |-  ( C  |`  A )  =  ( C  |`  B )

Proof of Theorem reseq2i
StepHypRef Expression
1 reseqi.1 . 2  |-  A  =  B
2 reseq2 4708 . 2  |-  ( A  =  B  ->  ( C  |`  A )  =  ( C  |`  B ) )
31, 2ax-mp 7 1  |-  ( C  |`  A )  =  ( C  |`  B )
Colors of variables: wff set class
Syntax hints:    = wceq 1289    |` cres 4440
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-in 3005  df-opab 3900  df-xp 4444  df-res 4450
This theorem is referenced by:  reseq12i  4711  rescom  4738  resdmdfsn  4755  rescnvcnv  4893  resdm2  4921  funcnvres  5087  funimaexg  5098  resdif  5275  frecfnom  6166  facnn  10135  fac0  10136  expcnv  10898  setsslid  11544
  Copyright terms: Public domain W3C validator