ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reseq2i Unicode version

Theorem reseq2i 4864
Description: Equality inference for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
reseqi.1  |-  A  =  B
Assertion
Ref Expression
reseq2i  |-  ( C  |`  A )  =  ( C  |`  B )

Proof of Theorem reseq2i
StepHypRef Expression
1 reseqi.1 . 2  |-  A  =  B
2 reseq2 4862 . 2  |-  ( A  =  B  ->  ( C  |`  A )  =  ( C  |`  B ) )
31, 2ax-mp 5 1  |-  ( C  |`  A )  =  ( C  |`  B )
Colors of variables: wff set class
Syntax hints:    = wceq 1335    |` cres 4589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-in 3108  df-opab 4027  df-xp 4593  df-res 4599
This theorem is referenced by:  reseq12i  4865  rescom  4892  resdmdfsn  4910  rescnvcnv  5049  resdm2  5077  funcnvres  5244  funimaexg  5255  resdif  5437  frecfnom  6349  facnn  10605  fac0  10606  expcnv  11405  setsslid  12282  uptx  12716  txcn  12717
  Copyright terms: Public domain W3C validator