ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reseq2i Unicode version

Theorem reseq2i 4975
Description: Equality inference for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
reseqi.1  |-  A  =  B
Assertion
Ref Expression
reseq2i  |-  ( C  |`  A )  =  ( C  |`  B )

Proof of Theorem reseq2i
StepHypRef Expression
1 reseqi.1 . 2  |-  A  =  B
2 reseq2 4973 . 2  |-  ( A  =  B  ->  ( C  |`  A )  =  ( C  |`  B ) )
31, 2ax-mp 5 1  |-  ( C  |`  A )  =  ( C  |`  B )
Colors of variables: wff set class
Syntax hints:    = wceq 1373    |` cres 4695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-in 3180  df-opab 4122  df-xp 4699  df-res 4705
This theorem is referenced by:  reseq12i  4976  rescom  5003  resdmdfsn  5021  rescnvcnv  5164  resdm2  5192  funcnvres  5366  funimaexg  5377  resdif  5566  frecfnom  6510  facnn  10909  fac0  10910  expcnv  11930  setsslid  12998  uptx  14861  txcn  14862
  Copyright terms: Public domain W3C validator