| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reseq2i | Unicode version | ||
| Description: Equality inference for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| reseqi.1 |
|
| Ref | Expression |
|---|---|
| reseq2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseqi.1 |
. 2
| |
| 2 | reseq2 5000 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-opab 4146 df-xp 4725 df-res 4731 |
| This theorem is referenced by: reseq12i 5003 rescom 5030 resdmdfsn 5048 rescnvcnv 5191 resdm2 5219 funcnvres 5394 funimaexg 5405 resdif 5594 frecfnom 6547 facnn 10949 fac0 10950 expcnv 12015 setsslid 13083 uptx 14948 txcn 14949 |
| Copyright terms: Public domain | W3C validator |