Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reseq2i | Unicode version |
Description: Equality inference for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
reseqi.1 |
Ref | Expression |
---|---|
reseq2i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseqi.1 | . 2 | |
2 | reseq2 4862 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1335 cres 4589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-in 3108 df-opab 4027 df-xp 4593 df-res 4599 |
This theorem is referenced by: reseq12i 4865 rescom 4892 resdmdfsn 4910 rescnvcnv 5049 resdm2 5077 funcnvres 5244 funimaexg 5255 resdif 5437 frecfnom 6349 facnn 10605 fac0 10606 expcnv 11405 setsslid 12282 uptx 12716 txcn 12717 |
Copyright terms: Public domain | W3C validator |