![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reseq2i | Unicode version |
Description: Equality inference for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
reseqi.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
reseq2i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseqi.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | reseq2 4904 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-in 3137 df-opab 4067 df-xp 4634 df-res 4640 |
This theorem is referenced by: reseq12i 4907 rescom 4934 resdmdfsn 4952 rescnvcnv 5093 resdm2 5121 funcnvres 5291 funimaexg 5302 resdif 5485 frecfnom 6404 facnn 10709 fac0 10710 expcnv 11514 setsslid 12515 uptx 13859 txcn 13860 |
Copyright terms: Public domain | W3C validator |