Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reseq12i | GIF version |
Description: Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.) |
Ref | Expression |
---|---|
reseqi.1 | ⊢ 𝐴 = 𝐵 |
reseqi.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
reseq12i | ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseqi.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | reseq1i 4887 | . 2 ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶) |
3 | reseqi.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
4 | 3 | reseq2i 4888 | . 2 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ↾ 𝐷) |
5 | 2, 4 | eqtri 2191 | 1 ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷) |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ↾ cres 4613 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 df-opab 4051 df-xp 4617 df-res 4623 |
This theorem is referenced by: cnvresid 5272 |
Copyright terms: Public domain | W3C validator |