![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > reseq12i | GIF version |
Description: Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.) |
Ref | Expression |
---|---|
reseqi.1 | ⊢ 𝐴 = 𝐵 |
reseqi.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
reseq12i | ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseqi.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | reseq1i 4904 | . 2 ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐶) |
3 | reseqi.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
4 | 3 | reseq2i 4905 | . 2 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ↾ 𝐷) |
5 | 2, 4 | eqtri 2198 | 1 ⊢ (𝐴 ↾ 𝐶) = (𝐵 ↾ 𝐷) |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ↾ cres 4629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2740 df-in 3136 df-opab 4066 df-xp 4633 df-res 4639 |
This theorem is referenced by: cnvresid 5291 |
Copyright terms: Public domain | W3C validator |