ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvresid Unicode version

Theorem cnvresid 5332
Description: Converse of a restricted identity function. (Contributed by FL, 4-Mar-2007.)
Assertion
Ref Expression
cnvresid  |-  `' (  _I  |`  A )  =  (  _I  |`  A )

Proof of Theorem cnvresid
StepHypRef Expression
1 cnvi 5074 . . 3  |-  `'  _I  =  _I
21eqcomi 2200 . 2  |-  _I  =  `'  _I
3 funi 5290 . . 3  |-  Fun  _I
4 funeq 5278 . . 3  |-  (  _I  =  `'  _I  ->  ( Fun  _I  <->  Fun  `'  _I  ) )
53, 4mpbii 148 . 2  |-  (  _I  =  `'  _I  ->  Fun  `'  _I  )
6 funcnvres 5331 . . 3  |-  ( Fun  `'  _I  ->  `' (  _I  |`  A )  =  ( `'  _I  |`  (  _I  " A ) ) )
7 imai 5025 . . . 4  |-  (  _I  " A )  =  A
81, 7reseq12i 4944 . . 3  |-  ( `'  _I  |`  (  _I  " A ) )  =  (  _I  |`  A )
96, 8eqtrdi 2245 . 2  |-  ( Fun  `'  _I  ->  `' (  _I  |`  A )  =  (  _I  |`  A ) )
102, 5, 9mp2b 8 1  |-  `' (  _I  |`  A )  =  (  _I  |`  A )
Colors of variables: wff set class
Syntax hints:    = wceq 1364    _I cid 4323   `'ccnv 4662    |` cres 4665   "cima 4666   Fun wfun 5252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-fun 5260
This theorem is referenced by:  fcoi1  5438  f1oi  5542  xnn0nnen  10529  ssidcn  14446  idhmeo  14553
  Copyright terms: Public domain W3C validator