ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvresid Unicode version

Theorem cnvresid 5328
Description: Converse of a restricted identity function. (Contributed by FL, 4-Mar-2007.)
Assertion
Ref Expression
cnvresid  |-  `' (  _I  |`  A )  =  (  _I  |`  A )

Proof of Theorem cnvresid
StepHypRef Expression
1 cnvi 5070 . . 3  |-  `'  _I  =  _I
21eqcomi 2197 . 2  |-  _I  =  `'  _I
3 funi 5286 . . 3  |-  Fun  _I
4 funeq 5274 . . 3  |-  (  _I  =  `'  _I  ->  ( Fun  _I  <->  Fun  `'  _I  ) )
53, 4mpbii 148 . 2  |-  (  _I  =  `'  _I  ->  Fun  `'  _I  )
6 funcnvres 5327 . . 3  |-  ( Fun  `'  _I  ->  `' (  _I  |`  A )  =  ( `'  _I  |`  (  _I  " A ) ) )
7 imai 5021 . . . 4  |-  (  _I  " A )  =  A
81, 7reseq12i 4940 . . 3  |-  ( `'  _I  |`  (  _I  " A ) )  =  (  _I  |`  A )
96, 8eqtrdi 2242 . 2  |-  ( Fun  `'  _I  ->  `' (  _I  |`  A )  =  (  _I  |`  A ) )
102, 5, 9mp2b 8 1  |-  `' (  _I  |`  A )  =  (  _I  |`  A )
Colors of variables: wff set class
Syntax hints:    = wceq 1364    _I cid 4319   `'ccnv 4658    |` cres 4661   "cima 4662   Fun wfun 5248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-fun 5256
This theorem is referenced by:  fcoi1  5434  f1oi  5538  xnn0nnen  10508  ssidcn  14378  idhmeo  14485
  Copyright terms: Public domain W3C validator