Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reseq1d | Unicode version |
Description: Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.) |
Ref | Expression |
---|---|
reseqd.1 |
Ref | Expression |
---|---|
reseq1d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseqd.1 | . 2 | |
2 | reseq1 4857 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1335 cres 4585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-in 3108 df-res 4595 |
This theorem is referenced by: reseq12d 4864 fun2ssres 5210 funcnvres2 5242 funimaexg 5251 fresin 5345 offres 6077 tfrlemisucaccv 6266 tfrlemi1 6273 tfr1onlemsucaccv 6282 tfrcllemsucaccv 6295 freceq1 6333 freceq2 6334 fseq1p1m1 9978 setsresg 12188 setscom 12190 dvcoapbr 13031 bj-charfundcALT 13344 |
Copyright terms: Public domain | W3C validator |