| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reseq1d | Unicode version | ||
| Description: Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.) |
| Ref | Expression |
|---|---|
| reseqd.1 |
|
| Ref | Expression |
|---|---|
| reseq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseqd.1 |
. 2
| |
| 2 | reseq1 4952 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-in 3171 df-res 4686 |
| This theorem is referenced by: reseq12d 4959 fun2ssres 5313 funcnvres2 5348 funimaexg 5357 fresin 5453 offres 6219 tfrlemisucaccv 6410 tfrlemi1 6417 tfr1onlemsucaccv 6426 tfrcllemsucaccv 6439 freceq1 6477 freceq2 6478 fseq1p1m1 10215 setsresg 12812 setscom 12814 znle2 14356 dvcoapbr 15121 bj-charfundcALT 15678 |
| Copyright terms: Public domain | W3C validator |