ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reseq1d Unicode version

Theorem reseq1d 4957
Description: Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.)
Hypothesis
Ref Expression
reseqd.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
reseq1d  |-  ( ph  ->  ( A  |`  C )  =  ( B  |`  C ) )

Proof of Theorem reseq1d
StepHypRef Expression
1 reseqd.1 . 2  |-  ( ph  ->  A  =  B )
2 reseq1 4952 . 2  |-  ( A  =  B  ->  ( A  |`  C )  =  ( B  |`  C ) )
31, 2syl 14 1  |-  ( ph  ->  ( A  |`  C )  =  ( B  |`  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372    |` cres 4676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-in 3171  df-res 4686
This theorem is referenced by:  reseq12d  4959  fun2ssres  5313  funcnvres2  5348  funimaexg  5357  fresin  5453  offres  6219  tfrlemisucaccv  6410  tfrlemi1  6417  tfr1onlemsucaccv  6426  tfrcllemsucaccv  6439  freceq1  6477  freceq2  6478  fseq1p1m1  10215  setsresg  12812  setscom  12814  znle2  14356  dvcoapbr  15121  bj-charfundcALT  15678
  Copyright terms: Public domain W3C validator