ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reseq1d Unicode version

Theorem reseq1d 4890
Description: Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.)
Hypothesis
Ref Expression
reseqd.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
reseq1d  |-  ( ph  ->  ( A  |`  C )  =  ( B  |`  C ) )

Proof of Theorem reseq1d
StepHypRef Expression
1 reseqd.1 . 2  |-  ( ph  ->  A  =  B )
2 reseq1 4885 . 2  |-  ( A  =  B  ->  ( A  |`  C )  =  ( B  |`  C ) )
31, 2syl 14 1  |-  ( ph  ->  ( A  |`  C )  =  ( B  |`  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    |` cres 4613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127  df-res 4623
This theorem is referenced by:  reseq12d  4892  fun2ssres  5241  funcnvres2  5273  funimaexg  5282  fresin  5376  offres  6114  tfrlemisucaccv  6304  tfrlemi1  6311  tfr1onlemsucaccv  6320  tfrcllemsucaccv  6333  freceq1  6371  freceq2  6372  fseq1p1m1  10050  setsresg  12454  setscom  12456  dvcoapbr  13465  bj-charfundcALT  13844
  Copyright terms: Public domain W3C validator