Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  reseq1d Unicode version

Theorem reseq1d 4862
 Description: Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.)
Hypothesis
Ref Expression
reseqd.1
Assertion
Ref Expression
reseq1d

Proof of Theorem reseq1d
StepHypRef Expression
1 reseqd.1 . 2
2 reseq1 4857 . 2
31, 2syl 14 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1335   cres 4585 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139 This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-in 3108  df-res 4595 This theorem is referenced by:  reseq12d  4864  fun2ssres  5210  funcnvres2  5242  funimaexg  5251  fresin  5345  offres  6077  tfrlemisucaccv  6266  tfrlemi1  6273  tfr1onlemsucaccv  6282  tfrcllemsucaccv  6295  freceq1  6333  freceq2  6334  fseq1p1m1  9978  setsresg  12188  setscom  12190  dvcoapbr  13031  bj-charfundcALT  13344
 Copyright terms: Public domain W3C validator