| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reseq1d | Unicode version | ||
| Description: Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.) |
| Ref | Expression |
|---|---|
| reseqd.1 |
|
| Ref | Expression |
|---|---|
| reseq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseqd.1 |
. 2
| |
| 2 | reseq1 4967 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-in 3176 df-res 4700 |
| This theorem is referenced by: reseq12d 4974 fun2ssres 5328 funcnvres2 5363 funimaexg 5372 fresin 5471 offres 6238 tfrlemisucaccv 6429 tfrlemi1 6436 tfr1onlemsucaccv 6445 tfrcllemsucaccv 6458 freceq1 6496 freceq2 6497 fseq1p1m1 10246 setsresg 12955 setscom 12957 znle2 14499 dvcoapbr 15264 bj-charfundcALT 15914 |
| Copyright terms: Public domain | W3C validator |