ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reseq1d Unicode version

Theorem reseq1d 5003
Description: Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.)
Hypothesis
Ref Expression
reseqd.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
reseq1d  |-  ( ph  ->  ( A  |`  C )  =  ( B  |`  C ) )

Proof of Theorem reseq1d
StepHypRef Expression
1 reseqd.1 . 2  |-  ( ph  ->  A  =  B )
2 reseq1 4998 . 2  |-  ( A  =  B  ->  ( A  |`  C )  =  ( B  |`  C ) )
31, 2syl 14 1  |-  ( ph  ->  ( A  |`  C )  =  ( B  |`  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    |` cres 4720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-res 4730
This theorem is referenced by:  reseq12d  5005  fun2ssres  5360  funcnvres2  5395  funimaexg  5404  fresin  5503  offres  6278  tfrlemisucaccv  6469  tfrlemi1  6476  tfr1onlemsucaccv  6485  tfrcllemsucaccv  6498  freceq1  6536  freceq2  6537  fseq1p1m1  10286  setsresg  13065  setscom  13067  znle2  14610  dvcoapbr  15375  bj-charfundcALT  16130
  Copyright terms: Public domain W3C validator