Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reuhyp | Unicode version |
Description: A theorem useful for eliminating restricted existential uniqueness hypotheses. (Contributed by NM, 15-Nov-2004.) |
Ref | Expression |
---|---|
reuhyp.1 | |
reuhyp.2 |
Ref | Expression |
---|---|
reuhyp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1352 | . 2 | |
2 | reuhyp.1 | . . . 4 | |
3 | 2 | adantl 275 | . . 3 |
4 | reuhyp.2 | . . . 4 | |
5 | 4 | 3adant1 1010 | . . 3 |
6 | 3, 5 | reuhypd 4456 | . 2 |
7 | 1, 6 | mpan 422 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wtru 1349 wcel 2141 wreu 2450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-reu 2455 df-v 2732 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |