ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reuhyp Unicode version

Theorem reuhyp 4474
Description: A theorem useful for eliminating restricted existential uniqueness hypotheses. (Contributed by NM, 15-Nov-2004.)
Hypotheses
Ref Expression
reuhyp.1  |-  ( x  e.  C  ->  B  e.  C )
reuhyp.2  |-  ( ( x  e.  C  /\  y  e.  C )  ->  ( x  =  A  <-> 
y  =  B ) )
Assertion
Ref Expression
reuhyp  |-  ( x  e.  C  ->  E! y  e.  C  x  =  A )
Distinct variable groups:    y, B    y, C    x, y
Allowed substitution hints:    A( x, y)    B( x)    C( x)

Proof of Theorem reuhyp
StepHypRef Expression
1 tru 1357 . 2  |- T.
2 reuhyp.1 . . . 4  |-  ( x  e.  C  ->  B  e.  C )
32adantl 277 . . 3  |-  ( ( T.  /\  x  e.  C )  ->  B  e.  C )
4 reuhyp.2 . . . 4  |-  ( ( x  e.  C  /\  y  e.  C )  ->  ( x  =  A  <-> 
y  =  B ) )
543adant1 1015 . . 3  |-  ( ( T.  /\  x  e.  C  /\  y  e.  C )  ->  (
x  =  A  <->  y  =  B ) )
63, 5reuhypd 4473 . 2  |-  ( ( T.  /\  x  e.  C )  ->  E! y  e.  C  x  =  A )
71, 6mpan 424 1  |-  ( x  e.  C  ->  E! y  e.  C  x  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353   T. wtru 1354    e. wcel 2148   E!wreu 2457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-reu 2462  df-v 2741
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator