ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reuhyp Unicode version

Theorem reuhyp 4503
Description: A theorem useful for eliminating restricted existential uniqueness hypotheses. (Contributed by NM, 15-Nov-2004.)
Hypotheses
Ref Expression
reuhyp.1  |-  ( x  e.  C  ->  B  e.  C )
reuhyp.2  |-  ( ( x  e.  C  /\  y  e.  C )  ->  ( x  =  A  <-> 
y  =  B ) )
Assertion
Ref Expression
reuhyp  |-  ( x  e.  C  ->  E! y  e.  C  x  =  A )
Distinct variable groups:    y, B    y, C    x, y
Allowed substitution hints:    A( x, y)    B( x)    C( x)

Proof of Theorem reuhyp
StepHypRef Expression
1 tru 1368 . 2  |- T.
2 reuhyp.1 . . . 4  |-  ( x  e.  C  ->  B  e.  C )
32adantl 277 . . 3  |-  ( ( T.  /\  x  e.  C )  ->  B  e.  C )
4 reuhyp.2 . . . 4  |-  ( ( x  e.  C  /\  y  e.  C )  ->  ( x  =  A  <-> 
y  =  B ) )
543adant1 1017 . . 3  |-  ( ( T.  /\  x  e.  C  /\  y  e.  C )  ->  (
x  =  A  <->  y  =  B ) )
63, 5reuhypd 4502 . 2  |-  ( ( T.  /\  x  e.  C )  ->  E! y  e.  C  x  =  A )
71, 6mpan 424 1  |-  ( x  e.  C  ->  E! y  e.  C  x  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   T. wtru 1365    e. wcel 2164   E!wreu 2474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-reu 2479  df-v 2762
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator