Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reuhyp | Unicode version |
Description: A theorem useful for eliminating restricted existential uniqueness hypotheses. (Contributed by NM, 15-Nov-2004.) |
Ref | Expression |
---|---|
reuhyp.1 | |
reuhyp.2 |
Ref | Expression |
---|---|
reuhyp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1357 | . 2 | |
2 | reuhyp.1 | . . . 4 | |
3 | 2 | adantl 277 | . . 3 |
4 | reuhyp.2 | . . . 4 | |
5 | 4 | 3adant1 1015 | . . 3 |
6 | 3, 5 | reuhypd 4465 | . 2 |
7 | 1, 6 | mpan 424 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wceq 1353 wtru 1354 wcel 2146 wreu 2455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-reu 2460 df-v 2737 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |