| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uniexb | Unicode version | ||
| Description: The Axiom of Union and its converse. A class is a set iff its union is a set. (Contributed by NM, 11-Nov-2003.) |
| Ref | Expression |
|---|---|
| uniexb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg 4530 |
. 2
| |
| 2 | pwuni 4276 |
. . 3
| |
| 3 | pwexg 4264 |
. . 3
| |
| 4 | ssexg 4223 |
. . 3
| |
| 5 | 2, 3, 4 | sylancr 414 |
. 2
|
| 6 | 1, 5 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-in 3203 df-ss 3210 df-pw 3651 df-uni 3889 |
| This theorem is referenced by: pwexb 4565 elpwpwel 4566 tfrlemibex 6475 tfr1onlembex 6491 tfrcllembex 6504 ixpexgg 6869 ptex 13297 tgss2 14753 txbasex 14931 |
| Copyright terms: Public domain | W3C validator |