ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniexb Unicode version

Theorem uniexb 4505
Description: The Axiom of Union and its converse. A class is a set iff its union is a set. (Contributed by NM, 11-Nov-2003.)
Assertion
Ref Expression
uniexb  |-  ( A  e.  _V  <->  U. A  e. 
_V )

Proof of Theorem uniexb
StepHypRef Expression
1 uniexg 4471 . 2  |-  ( A  e.  _V  ->  U. A  e.  _V )
2 pwuni 4222 . . 3  |-  A  C_  ~P U. A
3 pwexg 4210 . . 3  |-  ( U. A  e.  _V  ->  ~P
U. A  e.  _V )
4 ssexg 4169 . . 3  |-  ( ( A  C_  ~P U. A  /\  ~P U. A  e. 
_V )  ->  A  e.  _V )
52, 3, 4sylancr 414 . 2  |-  ( U. A  e.  _V  ->  A  e.  _V )
61, 5impbii 126 1  |-  ( A  e.  _V  <->  U. A  e. 
_V )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2164   _Vcvv 2760    C_ wss 3154   ~Pcpw 3602   U.cuni 3836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-in 3160  df-ss 3167  df-pw 3604  df-uni 3837
This theorem is referenced by:  pwexb  4506  elpwpwel  4507  tfrlemibex  6384  tfr1onlembex  6400  tfrcllembex  6413  ixpexgg  6778  ptex  12878  tgss2  14258  txbasex  14436
  Copyright terms: Public domain W3C validator