ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniexb Unicode version

Theorem uniexb 4508
Description: The Axiom of Union and its converse. A class is a set iff its union is a set. (Contributed by NM, 11-Nov-2003.)
Assertion
Ref Expression
uniexb  |-  ( A  e.  _V  <->  U. A  e. 
_V )

Proof of Theorem uniexb
StepHypRef Expression
1 uniexg 4474 . 2  |-  ( A  e.  _V  ->  U. A  e.  _V )
2 pwuni 4225 . . 3  |-  A  C_  ~P U. A
3 pwexg 4213 . . 3  |-  ( U. A  e.  _V  ->  ~P
U. A  e.  _V )
4 ssexg 4172 . . 3  |-  ( ( A  C_  ~P U. A  /\  ~P U. A  e. 
_V )  ->  A  e.  _V )
52, 3, 4sylancr 414 . 2  |-  ( U. A  e.  _V  ->  A  e.  _V )
61, 5impbii 126 1  |-  ( A  e.  _V  <->  U. A  e. 
_V )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2167   _Vcvv 2763    C_ wss 3157   ~Pcpw 3605   U.cuni 3839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-in 3163  df-ss 3170  df-pw 3607  df-uni 3840
This theorem is referenced by:  pwexb  4509  elpwpwel  4510  tfrlemibex  6387  tfr1onlembex  6403  tfrcllembex  6416  ixpexgg  6781  ptex  12935  tgss2  14315  txbasex  14493
  Copyright terms: Public domain W3C validator