ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniexb Unicode version

Theorem uniexb 4520
Description: The Axiom of Union and its converse. A class is a set iff its union is a set. (Contributed by NM, 11-Nov-2003.)
Assertion
Ref Expression
uniexb  |-  ( A  e.  _V  <->  U. A  e. 
_V )

Proof of Theorem uniexb
StepHypRef Expression
1 uniexg 4486 . 2  |-  ( A  e.  _V  ->  U. A  e.  _V )
2 pwuni 4236 . . 3  |-  A  C_  ~P U. A
3 pwexg 4224 . . 3  |-  ( U. A  e.  _V  ->  ~P
U. A  e.  _V )
4 ssexg 4183 . . 3  |-  ( ( A  C_  ~P U. A  /\  ~P U. A  e. 
_V )  ->  A  e.  _V )
52, 3, 4sylancr 414 . 2  |-  ( U. A  e.  _V  ->  A  e.  _V )
61, 5impbii 126 1  |-  ( A  e.  _V  <->  U. A  e. 
_V )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2176   _Vcvv 2772    C_ wss 3166   ~Pcpw 3616   U.cuni 3850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-v 2774  df-in 3172  df-ss 3179  df-pw 3618  df-uni 3851
This theorem is referenced by:  pwexb  4521  elpwpwel  4522  tfrlemibex  6415  tfr1onlembex  6431  tfrcllembex  6444  ixpexgg  6809  ptex  13096  tgss2  14551  txbasex  14729
  Copyright terms: Public domain W3C validator