| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uniexb | Unicode version | ||
| Description: The Axiom of Union and its converse. A class is a set iff its union is a set. (Contributed by NM, 11-Nov-2003.) |
| Ref | Expression |
|---|---|
| uniexb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg 4474 |
. 2
| |
| 2 | pwuni 4225 |
. . 3
| |
| 3 | pwexg 4213 |
. . 3
| |
| 4 | ssexg 4172 |
. . 3
| |
| 5 | 2, 3, 4 | sylancr 414 |
. 2
|
| 6 | 1, 5 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-in 3163 df-ss 3170 df-pw 3607 df-uni 3840 |
| This theorem is referenced by: pwexb 4509 elpwpwel 4510 tfrlemibex 6387 tfr1onlembex 6403 tfrcllembex 6416 ixpexgg 6781 ptex 12935 tgss2 14315 txbasex 14493 |
| Copyright terms: Public domain | W3C validator |