Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reuhyp | GIF version |
Description: A theorem useful for eliminating restricted existential uniqueness hypotheses. (Contributed by NM, 15-Nov-2004.) |
Ref | Expression |
---|---|
reuhyp.1 | ⊢ (𝑥 ∈ 𝐶 → 𝐵 ∈ 𝐶) |
reuhyp.2 | ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → (𝑥 = 𝐴 ↔ 𝑦 = 𝐵)) |
Ref | Expression |
---|---|
reuhyp | ⊢ (𝑥 ∈ 𝐶 → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1347 | . 2 ⊢ ⊤ | |
2 | reuhyp.1 | . . . 4 ⊢ (𝑥 ∈ 𝐶 → 𝐵 ∈ 𝐶) | |
3 | 2 | adantl 275 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐶) → 𝐵 ∈ 𝐶) |
4 | reuhyp.2 | . . . 4 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → (𝑥 = 𝐴 ↔ 𝑦 = 𝐵)) | |
5 | 4 | 3adant1 1005 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶) → (𝑥 = 𝐴 ↔ 𝑦 = 𝐵)) |
6 | 3, 5 | reuhypd 4449 | . 2 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐶) → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) |
7 | 1, 6 | mpan 421 | 1 ⊢ (𝑥 ∈ 𝐶 → ∃!𝑦 ∈ 𝐶 𝑥 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ⊤wtru 1344 ∈ wcel 2136 ∃!wreu 2446 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-reu 2451 df-v 2728 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |