ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reuhyp GIF version

Theorem reuhyp 4450
Description: A theorem useful for eliminating restricted existential uniqueness hypotheses. (Contributed by NM, 15-Nov-2004.)
Hypotheses
Ref Expression
reuhyp.1 (𝑥𝐶𝐵𝐶)
reuhyp.2 ((𝑥𝐶𝑦𝐶) → (𝑥 = 𝐴𝑦 = 𝐵))
Assertion
Ref Expression
reuhyp (𝑥𝐶 → ∃!𝑦𝐶 𝑥 = 𝐴)
Distinct variable groups:   𝑦,𝐵   𝑦,𝐶   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem reuhyp
StepHypRef Expression
1 tru 1347 . 2
2 reuhyp.1 . . . 4 (𝑥𝐶𝐵𝐶)
32adantl 275 . . 3 ((⊤ ∧ 𝑥𝐶) → 𝐵𝐶)
4 reuhyp.2 . . . 4 ((𝑥𝐶𝑦𝐶) → (𝑥 = 𝐴𝑦 = 𝐵))
543adant1 1005 . . 3 ((⊤ ∧ 𝑥𝐶𝑦𝐶) → (𝑥 = 𝐴𝑦 = 𝐵))
63, 5reuhypd 4449 . 2 ((⊤ ∧ 𝑥𝐶) → ∃!𝑦𝐶 𝑥 = 𝐴)
71, 6mpan 421 1 (𝑥𝐶 → ∃!𝑦𝐶 𝑥 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wtru 1344  wcel 2136  ∃!wreu 2446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-reu 2451  df-v 2728
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator