ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reuhyp GIF version

Theorem reuhyp 4519
Description: A theorem useful for eliminating restricted existential uniqueness hypotheses. (Contributed by NM, 15-Nov-2004.)
Hypotheses
Ref Expression
reuhyp.1 (𝑥𝐶𝐵𝐶)
reuhyp.2 ((𝑥𝐶𝑦𝐶) → (𝑥 = 𝐴𝑦 = 𝐵))
Assertion
Ref Expression
reuhyp (𝑥𝐶 → ∃!𝑦𝐶 𝑥 = 𝐴)
Distinct variable groups:   𝑦,𝐵   𝑦,𝐶   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem reuhyp
StepHypRef Expression
1 tru 1377 . 2
2 reuhyp.1 . . . 4 (𝑥𝐶𝐵𝐶)
32adantl 277 . . 3 ((⊤ ∧ 𝑥𝐶) → 𝐵𝐶)
4 reuhyp.2 . . . 4 ((𝑥𝐶𝑦𝐶) → (𝑥 = 𝐴𝑦 = 𝐵))
543adant1 1018 . . 3 ((⊤ ∧ 𝑥𝐶𝑦𝐶) → (𝑥 = 𝐴𝑦 = 𝐵))
63, 5reuhypd 4518 . 2 ((⊤ ∧ 𝑥𝐶) → ∃!𝑦𝐶 𝑥 = 𝐴)
71, 6mpan 424 1 (𝑥𝐶 → ∃!𝑦𝐶 𝑥 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wtru 1374  wcel 2176  ∃!wreu 2486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-reu 2491  df-v 2774
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator