ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexab Unicode version

Theorem rexab 2934
Description: Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 23-Jan-2014.) (Revised by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ralab.1  |-  ( y  =  x  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rexab  |-  ( E. x  e.  { y  |  ph } ch  <->  E. x ( ps  /\  ch ) )
Distinct variable groups:    x, y    ps, y
Allowed substitution hints:    ph( x, y)    ps( x)    ch( x, y)

Proof of Theorem rexab
StepHypRef Expression
1 df-rex 2489 . 2  |-  ( E. x  e.  { y  |  ph } ch  <->  E. x ( x  e. 
{ y  |  ph }  /\  ch ) )
2 vex 2774 . . . . 5  |-  x  e. 
_V
3 ralab.1 . . . . 5  |-  ( y  =  x  ->  ( ph 
<->  ps ) )
42, 3elab 2916 . . . 4  |-  ( x  e.  { y  | 
ph }  <->  ps )
54anbi1i 458 . . 3  |-  ( ( x  e.  { y  |  ph }  /\  ch )  <->  ( ps  /\  ch ) )
65exbii 1627 . 2  |-  ( E. x ( x  e. 
{ y  |  ph }  /\  ch )  <->  E. x
( ps  /\  ch ) )
71, 6bitri 184 1  |-  ( E. x  e.  { y  |  ph } ch  <->  E. x ( ps  /\  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   E.wex 1514    e. wcel 2175   {cab 2190   E.wrex 2484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rex 2489  df-v 2773
This theorem is referenced by:  rexrnmpo  6060  4sqlem12  12667
  Copyright terms: Public domain W3C validator