![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexab | GIF version |
Description: Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 23-Jan-2014.) (Revised by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
ralab.1 | ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rexab | ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜑}𝜒 ↔ ∃𝑥(𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2365 | . 2 ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜑}𝜒 ↔ ∃𝑥(𝑥 ∈ {𝑦 ∣ 𝜑} ∧ 𝜒)) | |
2 | vex 2622 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | ralab.1 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) | |
4 | 2, 3 | elab 2760 | . . . 4 ⊢ (𝑥 ∈ {𝑦 ∣ 𝜑} ↔ 𝜓) |
5 | 4 | anbi1i 446 | . . 3 ⊢ ((𝑥 ∈ {𝑦 ∣ 𝜑} ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)) |
6 | 5 | exbii 1541 | . 2 ⊢ (∃𝑥(𝑥 ∈ {𝑦 ∣ 𝜑} ∧ 𝜒) ↔ ∃𝑥(𝜓 ∧ 𝜒)) |
7 | 1, 6 | bitri 182 | 1 ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜑}𝜒 ↔ ∃𝑥(𝜓 ∧ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∃wex 1426 ∈ wcel 1438 {cab 2074 ∃wrex 2360 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-rex 2365 df-v 2621 |
This theorem is referenced by: rexrnmpt2 5752 |
Copyright terms: Public domain | W3C validator |