ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexab GIF version

Theorem rexab 2888
Description: Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 23-Jan-2014.) (Revised by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ralab.1 (𝑦 = 𝑥 → (𝜑𝜓))
Assertion
Ref Expression
rexab (∃𝑥 ∈ {𝑦𝜑}𝜒 ↔ ∃𝑥(𝜓𝜒))
Distinct variable groups:   𝑥,𝑦   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥)   𝜒(𝑥,𝑦)

Proof of Theorem rexab
StepHypRef Expression
1 df-rex 2450 . 2 (∃𝑥 ∈ {𝑦𝜑}𝜒 ↔ ∃𝑥(𝑥 ∈ {𝑦𝜑} ∧ 𝜒))
2 vex 2729 . . . . 5 𝑥 ∈ V
3 ralab.1 . . . . 5 (𝑦 = 𝑥 → (𝜑𝜓))
42, 3elab 2870 . . . 4 (𝑥 ∈ {𝑦𝜑} ↔ 𝜓)
54anbi1i 454 . . 3 ((𝑥 ∈ {𝑦𝜑} ∧ 𝜒) ↔ (𝜓𝜒))
65exbii 1593 . 2 (∃𝑥(𝑥 ∈ {𝑦𝜑} ∧ 𝜒) ↔ ∃𝑥(𝜓𝜒))
71, 6bitri 183 1 (∃𝑥 ∈ {𝑦𝜑}𝜒 ↔ ∃𝑥(𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wex 1480  wcel 2136  {cab 2151  wrex 2445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728
This theorem is referenced by:  rexrnmpo  5957
  Copyright terms: Public domain W3C validator