ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexrab Unicode version

Theorem rexrab 2776
Description: Existential quantification over a class abstraction. (Contributed by Jeff Madsen, 17-Jun-2011.) (Revised by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ralab.1  |-  ( y  =  x  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rexrab  |-  ( E. x  e.  { y  e.  A  |  ph } ch  <->  E. x  e.  A  ( ps  /\  ch )
)
Distinct variable groups:    x, y    y, A    ps, y
Allowed substitution hints:    ph( x, y)    ps( x)    ch( x, y)    A( x)

Proof of Theorem rexrab
StepHypRef Expression
1 ralab.1 . . . . 5  |-  ( y  =  x  ->  ( ph 
<->  ps ) )
21elrab 2769 . . . 4  |-  ( x  e.  { y  e.  A  |  ph }  <->  ( x  e.  A  /\  ps ) )
32anbi1i 446 . . 3  |-  ( ( x  e.  { y  e.  A  |  ph }  /\  ch )  <->  ( (
x  e.  A  /\  ps )  /\  ch )
)
4 anass 393 . . 3  |-  ( ( ( x  e.  A  /\  ps )  /\  ch ) 
<->  ( x  e.  A  /\  ( ps  /\  ch ) ) )
53, 4bitri 182 . 2  |-  ( ( x  e.  { y  e.  A  |  ph }  /\  ch )  <->  ( x  e.  A  /\  ( ps  /\  ch ) ) )
65rexbii2 2389 1  |-  ( E. x  e.  { y  e.  A  |  ph } ch  <->  E. x  e.  A  ( ps  /\  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    e. wcel 1438   E.wrex 2360   {crab 2363
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-rex 2365  df-rab 2368  df-v 2621
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator