ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexcom4a Unicode version

Theorem rexcom4a 2754
Description: Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.)
Assertion
Ref Expression
rexcom4a  |-  ( E. x E. y  e.  A  ( ph  /\  ps )  <->  E. y  e.  A  ( ph  /\  E. x ps ) )
Distinct variable groups:    x, A    x, y    ph, x
Allowed substitution hints:    ph( y)    ps( x, y)    A( y)

Proof of Theorem rexcom4a
StepHypRef Expression
1 rexcom4 2753 . 2  |-  ( E. y  e.  A  E. x ( ph  /\  ps )  <->  E. x E. y  e.  A  ( ph  /\ 
ps ) )
2 19.42v 1899 . . 3  |-  ( E. x ( ph  /\  ps )  <->  ( ph  /\  E. x ps ) )
32rexbii 2477 . 2  |-  ( E. y  e.  A  E. x ( ph  /\  ps )  <->  E. y  e.  A  ( ph  /\  E. x ps ) )
41, 3bitr3i 185 1  |-  ( E. x E. y  e.  A  ( ph  /\  ps )  <->  E. y  e.  A  ( ph  /\  E. x ps ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   E.wex 1485   E.wrex 2449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732
This theorem is referenced by:  rexcom4b  2755
  Copyright terms: Public domain W3C validator