ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexcom4a Unicode version

Theorem rexcom4a 2784
Description: Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.)
Assertion
Ref Expression
rexcom4a  |-  ( E. x E. y  e.  A  ( ph  /\  ps )  <->  E. y  e.  A  ( ph  /\  E. x ps ) )
Distinct variable groups:    x, A    x, y    ph, x
Allowed substitution hints:    ph( y)    ps( x, y)    A( y)

Proof of Theorem rexcom4a
StepHypRef Expression
1 rexcom4 2783 . 2  |-  ( E. y  e.  A  E. x ( ph  /\  ps )  <->  E. x E. y  e.  A  ( ph  /\ 
ps ) )
2 19.42v 1918 . . 3  |-  ( E. x ( ph  /\  ps )  <->  ( ph  /\  E. x ps ) )
32rexbii 2501 . 2  |-  ( E. y  e.  A  E. x ( ph  /\  ps )  <->  E. y  e.  A  ( ph  /\  E. x ps ) )
41, 3bitr3i 186 1  |-  ( E. x E. y  e.  A  ( ph  /\  ps )  <->  E. y  e.  A  ( ph  /\  E. x ps ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   E.wex 1503   E.wrex 2473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762
This theorem is referenced by:  rexcom4b  2785
  Copyright terms: Public domain W3C validator