Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexcom4b Unicode version

Theorem rexcom4b 2683
 Description: Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.)
Hypothesis
Ref Expression
rexcom4b.1
Assertion
Ref Expression
rexcom4b
Distinct variable groups:   ,   ,   ,   ,
Allowed substitution hints:   ()   ()   ()

Proof of Theorem rexcom4b
StepHypRef Expression
1 rexcom4a 2682 . 2
2 rexcom4b.1 . . . . 5
32isseti 2666 . . . 4
43biantru 298 . . 3
54rexbii 2417 . 2
61, 5bitr4i 186 1
 Colors of variables: wff set class Syntax hints:   wa 103   wb 104   wceq 1314  wex 1451   wcel 1463  wrex 2392  cvv 2658 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097 This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-rex 2397  df-v 2660 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator