ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexcom4b Unicode version

Theorem rexcom4b 2755
Description: Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.)
Hypothesis
Ref Expression
rexcom4b.1  |-  B  e. 
_V
Assertion
Ref Expression
rexcom4b  |-  ( E. x E. y  e.  A  ( ph  /\  x  =  B )  <->  E. y  e.  A  ph )
Distinct variable groups:    x, A    x, y    ph, x    x, B
Allowed substitution hints:    ph( y)    A( y)    B( y)

Proof of Theorem rexcom4b
StepHypRef Expression
1 rexcom4a 2754 . 2  |-  ( E. x E. y  e.  A  ( ph  /\  x  =  B )  <->  E. y  e.  A  (
ph  /\  E. x  x  =  B )
)
2 rexcom4b.1 . . . . 5  |-  B  e. 
_V
32isseti 2738 . . . 4  |-  E. x  x  =  B
43biantru 300 . . 3  |-  ( ph  <->  (
ph  /\  E. x  x  =  B )
)
54rexbii 2477 . 2  |-  ( E. y  e.  A  ph  <->  E. y  e.  A  (
ph  /\  E. x  x  =  B )
)
61, 5bitr4i 186 1  |-  ( E. x E. y  e.  A  ( ph  /\  x  =  B )  <->  E. y  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1348   E.wex 1485    e. wcel 2141   E.wrex 2449   _Vcvv 2730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator