ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexcom4 Unicode version

Theorem rexcom4 2797
Description: Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Assertion
Ref Expression
rexcom4  |-  ( E. x  e.  A  E. y ph  <->  E. y E. x  e.  A  ph )
Distinct variable groups:    x, y    y, A
Allowed substitution hints:    ph( x, y)    A( x)

Proof of Theorem rexcom4
StepHypRef Expression
1 rexcom 2671 . 2  |-  ( E. x  e.  A  E. y  e.  _V  ph  <->  E. y  e.  _V  E. x  e.  A  ph )
2 rexv 2792 . . 3  |-  ( E. y  e.  _V  ph  <->  E. y ph )
32rexbii 2514 . 2  |-  ( E. x  e.  A  E. y  e.  _V  ph  <->  E. x  e.  A  E. y ph )
4 rexv 2792 . 2  |-  ( E. y  e.  _V  E. x  e.  A  ph  <->  E. y E. x  e.  A  ph )
51, 3, 43bitr3i 210 1  |-  ( E. x  e.  A  E. y ph  <->  E. y E. x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   E.wex 1516   E.wrex 2486   _Vcvv 2773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491  df-v 2775
This theorem is referenced by:  rexcom4a  2798  reuind  2982  iuncom4  3940  dfiun2g  3965  iunn0m  3994  iunxiun  4015  iinexgm  4206  inuni  4207  iunopab  4336  xpiundi  4741  xpiundir  4742  cnvuni  4872  dmiun  4896  elres  5004  elsnres  5005  rniun  5102  imaco  5197  coiun  5201  fun11iun  5555  abrexco  5841  imaiun  5842  fliftf  5881  rexrnmpo  6074  oprabrexex2  6228  releldm2  6284  eroveu  6726  genpassl  7657  genpassu  7658  ltexprlemopl  7734  ltexprlemopu  7736  pceu  12693  4sqlem12  12800  ntreq0  14679  metrest  15053
  Copyright terms: Public domain W3C validator