ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexcom4 Unicode version

Theorem rexcom4 2823
Description: Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Assertion
Ref Expression
rexcom4  |-  ( E. x  e.  A  E. y ph  <->  E. y E. x  e.  A  ph )
Distinct variable groups:    x, y    y, A
Allowed substitution hints:    ph( x, y)    A( x)

Proof of Theorem rexcom4
StepHypRef Expression
1 rexcom 2695 . 2  |-  ( E. x  e.  A  E. y  e.  _V  ph  <->  E. y  e.  _V  E. x  e.  A  ph )
2 rexv 2818 . . 3  |-  ( E. y  e.  _V  ph  <->  E. y ph )
32rexbii 2537 . 2  |-  ( E. x  e.  A  E. y  e.  _V  ph  <->  E. x  e.  A  E. y ph )
4 rexv 2818 . 2  |-  ( E. y  e.  _V  E. x  e.  A  ph  <->  E. y E. x  e.  A  ph )
51, 3, 43bitr3i 210 1  |-  ( E. x  e.  A  E. y ph  <->  E. y E. x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   E.wex 1538   E.wrex 2509   _Vcvv 2799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801
This theorem is referenced by:  rexcom4a  2824  reuind  3008  iuncom4  3971  dfiun2g  3996  iunn0m  4025  iunxiun  4046  iinexgm  4237  inuni  4238  iunopab  4369  xpiundi  4776  xpiundir  4777  cnvuni  4907  dmiun  4931  elres  5040  elsnres  5041  rniun  5138  imaco  5233  coiun  5237  fun11iun  5592  abrexco  5882  imaiun  5883  fliftf  5922  rexrnmpo  6119  oprabrexex2  6273  releldm2  6329  eroveu  6771  genpassl  7707  genpassu  7708  ltexprlemopl  7784  ltexprlemopu  7786  pceu  12813  4sqlem12  12920  ntreq0  14800  metrest  15174
  Copyright terms: Public domain W3C validator