ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexcom4 Unicode version

Theorem rexcom4 2786
Description: Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Assertion
Ref Expression
rexcom4  |-  ( E. x  e.  A  E. y ph  <->  E. y E. x  e.  A  ph )
Distinct variable groups:    x, y    y, A
Allowed substitution hints:    ph( x, y)    A( x)

Proof of Theorem rexcom4
StepHypRef Expression
1 rexcom 2661 . 2  |-  ( E. x  e.  A  E. y  e.  _V  ph  <->  E. y  e.  _V  E. x  e.  A  ph )
2 rexv 2781 . . 3  |-  ( E. y  e.  _V  ph  <->  E. y ph )
32rexbii 2504 . 2  |-  ( E. x  e.  A  E. y  e.  _V  ph  <->  E. x  e.  A  E. y ph )
4 rexv 2781 . 2  |-  ( E. y  e.  _V  E. x  e.  A  ph  <->  E. y E. x  e.  A  ph )
51, 3, 43bitr3i 210 1  |-  ( E. x  e.  A  E. y ph  <->  E. y E. x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   E.wex 1506   E.wrex 2476   _Vcvv 2763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765
This theorem is referenced by:  rexcom4a  2787  reuind  2969  iuncom4  3923  dfiun2g  3948  iunn0m  3977  iunxiun  3998  iinexgm  4187  inuni  4188  iunopab  4316  xpiundi  4721  xpiundir  4722  cnvuni  4852  dmiun  4875  elres  4982  elsnres  4983  rniun  5080  imaco  5175  coiun  5179  fun11iun  5525  abrexco  5806  imaiun  5807  fliftf  5846  rexrnmpo  6038  oprabrexex2  6187  releldm2  6243  eroveu  6685  genpassl  7591  genpassu  7592  ltexprlemopl  7668  ltexprlemopu  7670  pceu  12464  4sqlem12  12571  ntreq0  14368  metrest  14742
  Copyright terms: Public domain W3C validator