Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexcom4 | Unicode version |
Description: Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
rexcom4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexcom 2639 | . 2 | |
2 | rexv 2753 | . . 3 | |
3 | 2 | rexbii 2482 | . 2 |
4 | rexv 2753 | . 2 | |
5 | 1, 3, 4 | 3bitr3i 210 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 105 wex 1490 wrex 2454 cvv 2735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rex 2459 df-v 2737 |
This theorem is referenced by: rexcom4a 2759 reuind 2940 iuncom4 3889 dfiun2g 3914 iunn0m 3942 iunxiun 3963 iinexgm 4149 inuni 4150 iunopab 4275 xpiundi 4678 xpiundir 4679 cnvuni 4806 dmiun 4829 elres 4936 elsnres 4937 rniun 5031 imaco 5126 coiun 5130 fun11iun 5474 abrexco 5750 imaiun 5751 fliftf 5790 rexrnmpo 5980 oprabrexex2 6121 releldm2 6176 eroveu 6616 genpassl 7498 genpassu 7499 ltexprlemopl 7575 ltexprlemopu 7577 pceu 12260 ntreq0 13183 metrest 13557 |
Copyright terms: Public domain | W3C validator |