| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > rexcom4 | Unicode version | ||
| Description: Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| rexcom4 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rexcom 2661 | 
. 2
 | |
| 2 | rexv 2781 | 
. . 3
 | |
| 3 | 2 | rexbii 2504 | 
. 2
 | 
| 4 | rexv 2781 | 
. 2
 | |
| 5 | 1, 3, 4 | 3bitr3i 210 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 | 
| This theorem is referenced by: rexcom4a 2787 reuind 2969 iuncom4 3923 dfiun2g 3948 iunn0m 3977 iunxiun 3998 iinexgm 4187 inuni 4188 iunopab 4316 xpiundi 4721 xpiundir 4722 cnvuni 4852 dmiun 4875 elres 4982 elsnres 4983 rniun 5080 imaco 5175 coiun 5179 fun11iun 5525 abrexco 5806 imaiun 5807 fliftf 5846 rexrnmpo 6038 oprabrexex2 6187 releldm2 6243 eroveu 6685 genpassl 7591 genpassu 7592 ltexprlemopl 7668 ltexprlemopu 7670 pceu 12464 4sqlem12 12571 ntreq0 14368 metrest 14742 | 
| Copyright terms: Public domain | W3C validator |