| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexcom4 | Unicode version | ||
| Description: Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| rexcom4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexcom 2695 |
. 2
| |
| 2 | rexv 2818 |
. . 3
| |
| 3 | 2 | rexbii 2537 |
. 2
|
| 4 | rexv 2818 |
. 2
| |
| 5 | 1, 3, 4 | 3bitr3i 210 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 |
| This theorem is referenced by: rexcom4a 2824 reuind 3008 iuncom4 3971 dfiun2g 3996 iunn0m 4025 iunxiun 4046 iinexgm 4237 inuni 4238 iunopab 4369 xpiundi 4776 xpiundir 4777 cnvuni 4907 dmiun 4931 elres 5040 elsnres 5041 rniun 5138 imaco 5233 coiun 5237 fun11iun 5592 abrexco 5882 imaiun 5883 fliftf 5922 rexrnmpo 6119 oprabrexex2 6273 releldm2 6329 eroveu 6771 genpassl 7707 genpassu 7708 ltexprlemopl 7784 ltexprlemopu 7786 pceu 12813 4sqlem12 12920 ntreq0 14800 metrest 15174 |
| Copyright terms: Public domain | W3C validator |