ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexcom4 Unicode version

Theorem rexcom4 2794
Description: Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Assertion
Ref Expression
rexcom4  |-  ( E. x  e.  A  E. y ph  <->  E. y E. x  e.  A  ph )
Distinct variable groups:    x, y    y, A
Allowed substitution hints:    ph( x, y)    A( x)

Proof of Theorem rexcom4
StepHypRef Expression
1 rexcom 2669 . 2  |-  ( E. x  e.  A  E. y  e.  _V  ph  <->  E. y  e.  _V  E. x  e.  A  ph )
2 rexv 2789 . . 3  |-  ( E. y  e.  _V  ph  <->  E. y ph )
32rexbii 2512 . 2  |-  ( E. x  e.  A  E. y  e.  _V  ph  <->  E. x  e.  A  E. y ph )
4 rexv 2789 . 2  |-  ( E. y  e.  _V  E. x  e.  A  ph  <->  E. y E. x  e.  A  ph )
51, 3, 43bitr3i 210 1  |-  ( E. x  e.  A  E. y ph  <->  E. y E. x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   E.wex 1514   E.wrex 2484   _Vcvv 2771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rex 2489  df-v 2773
This theorem is referenced by:  rexcom4a  2795  reuind  2977  iuncom4  3933  dfiun2g  3958  iunn0m  3987  iunxiun  4008  iinexgm  4197  inuni  4198  iunopab  4327  xpiundi  4732  xpiundir  4733  cnvuni  4863  dmiun  4886  elres  4994  elsnres  4995  rniun  5092  imaco  5187  coiun  5191  fun11iun  5542  abrexco  5827  imaiun  5828  fliftf  5867  rexrnmpo  6060  oprabrexex2  6214  releldm2  6270  eroveu  6712  genpassl  7636  genpassu  7637  ltexprlemopl  7713  ltexprlemopu  7715  pceu  12560  4sqlem12  12667  ntreq0  14546  metrest  14920
  Copyright terms: Public domain W3C validator