| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexcom4 | Unicode version | ||
| Description: Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| rexcom4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexcom 2671 |
. 2
| |
| 2 | rexv 2792 |
. . 3
| |
| 3 | 2 | rexbii 2514 |
. 2
|
| 4 | rexv 2792 |
. 2
| |
| 5 | 1, 3, 4 | 3bitr3i 210 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 |
| This theorem is referenced by: rexcom4a 2798 reuind 2982 iuncom4 3940 dfiun2g 3965 iunn0m 3994 iunxiun 4015 iinexgm 4206 inuni 4207 iunopab 4336 xpiundi 4741 xpiundir 4742 cnvuni 4872 dmiun 4896 elres 5004 elsnres 5005 rniun 5102 imaco 5197 coiun 5201 fun11iun 5555 abrexco 5841 imaiun 5842 fliftf 5881 rexrnmpo 6074 oprabrexex2 6228 releldm2 6284 eroveu 6726 genpassl 7657 genpassu 7658 ltexprlemopl 7734 ltexprlemopu 7736 pceu 12693 4sqlem12 12800 ntreq0 14679 metrest 15053 |
| Copyright terms: Public domain | W3C validator |