ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexcom4 Unicode version

Theorem rexcom4 2749
Description: Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Assertion
Ref Expression
rexcom4  |-  ( E. x  e.  A  E. y ph  <->  E. y E. x  e.  A  ph )
Distinct variable groups:    x, y    y, A
Allowed substitution hints:    ph( x, y)    A( x)

Proof of Theorem rexcom4
StepHypRef Expression
1 rexcom 2630 . 2  |-  ( E. x  e.  A  E. y  e.  _V  ph  <->  E. y  e.  _V  E. x  e.  A  ph )
2 rexv 2744 . . 3  |-  ( E. y  e.  _V  ph  <->  E. y ph )
32rexbii 2473 . 2  |-  ( E. x  e.  A  E. y  e.  _V  ph  <->  E. x  e.  A  E. y ph )
4 rexv 2744 . 2  |-  ( E. y  e.  _V  E. x  e.  A  ph  <->  E. y E. x  e.  A  ph )
51, 3, 43bitr3i 209 1  |-  ( E. x  e.  A  E. y ph  <->  E. y E. x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   E.wex 1480   E.wrex 2445   _Vcvv 2726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728
This theorem is referenced by:  rexcom4a  2750  reuind  2931  iuncom4  3873  dfiun2g  3898  iunn0m  3926  iunxiun  3947  iinexgm  4133  inuni  4134  iunopab  4259  xpiundi  4662  xpiundir  4663  cnvuni  4790  dmiun  4813  elres  4920  elsnres  4921  rniun  5014  imaco  5109  coiun  5113  fun11iun  5453  abrexco  5727  imaiun  5728  fliftf  5767  rexrnmpo  5957  oprabrexex2  6098  releldm2  6153  eroveu  6592  genpassl  7465  genpassu  7466  ltexprlemopl  7542  ltexprlemopu  7544  pceu  12227  ntreq0  12772  metrest  13146
  Copyright terms: Public domain W3C validator