ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexcom4 Unicode version

Theorem rexcom4 2753
Description: Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Assertion
Ref Expression
rexcom4  |-  ( E. x  e.  A  E. y ph  <->  E. y E. x  e.  A  ph )
Distinct variable groups:    x, y    y, A
Allowed substitution hints:    ph( x, y)    A( x)

Proof of Theorem rexcom4
StepHypRef Expression
1 rexcom 2634 . 2  |-  ( E. x  e.  A  E. y  e.  _V  ph  <->  E. y  e.  _V  E. x  e.  A  ph )
2 rexv 2748 . . 3  |-  ( E. y  e.  _V  ph  <->  E. y ph )
32rexbii 2477 . 2  |-  ( E. x  e.  A  E. y  e.  _V  ph  <->  E. x  e.  A  E. y ph )
4 rexv 2748 . 2  |-  ( E. y  e.  _V  E. x  e.  A  ph  <->  E. y E. x  e.  A  ph )
51, 3, 43bitr3i 209 1  |-  ( E. x  e.  A  E. y ph  <->  E. y E. x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   E.wex 1485   E.wrex 2449   _Vcvv 2730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732
This theorem is referenced by:  rexcom4a  2754  reuind  2935  iuncom4  3880  dfiun2g  3905  iunn0m  3933  iunxiun  3954  iinexgm  4140  inuni  4141  iunopab  4266  xpiundi  4669  xpiundir  4670  cnvuni  4797  dmiun  4820  elres  4927  elsnres  4928  rniun  5021  imaco  5116  coiun  5120  fun11iun  5463  abrexco  5738  imaiun  5739  fliftf  5778  rexrnmpo  5968  oprabrexex2  6109  releldm2  6164  eroveu  6604  genpassl  7486  genpassu  7487  ltexprlemopl  7563  ltexprlemopu  7565  pceu  12249  ntreq0  12926  metrest  13300
  Copyright terms: Public domain W3C validator