Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexcom4 | Unicode version |
Description: Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
rexcom4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexcom 2634 | . 2 | |
2 | rexv 2748 | . . 3 | |
3 | 2 | rexbii 2477 | . 2 |
4 | rexv 2748 | . 2 | |
5 | 1, 3, 4 | 3bitr3i 209 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wex 1485 wrex 2449 cvv 2730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 |
This theorem is referenced by: rexcom4a 2754 reuind 2935 iuncom4 3880 dfiun2g 3905 iunn0m 3933 iunxiun 3954 iinexgm 4140 inuni 4141 iunopab 4266 xpiundi 4669 xpiundir 4670 cnvuni 4797 dmiun 4820 elres 4927 elsnres 4928 rniun 5021 imaco 5116 coiun 5120 fun11iun 5463 abrexco 5738 imaiun 5739 fliftf 5778 rexrnmpo 5968 oprabrexex2 6109 releldm2 6164 eroveu 6604 genpassl 7486 genpassu 7487 ltexprlemopl 7563 ltexprlemopu 7565 pceu 12249 ntreq0 12926 metrest 13300 |
Copyright terms: Public domain | W3C validator |