Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexcom4 | Unicode version |
Description: Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
rexcom4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexcom 2630 | . 2 | |
2 | rexv 2744 | . . 3 | |
3 | 2 | rexbii 2473 | . 2 |
4 | rexv 2744 | . 2 | |
5 | 1, 3, 4 | 3bitr3i 209 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wex 1480 wrex 2445 cvv 2726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 |
This theorem is referenced by: rexcom4a 2750 reuind 2931 iuncom4 3873 dfiun2g 3898 iunn0m 3926 iunxiun 3947 iinexgm 4133 inuni 4134 iunopab 4259 xpiundi 4662 xpiundir 4663 cnvuni 4790 dmiun 4813 elres 4920 elsnres 4921 rniun 5014 imaco 5109 coiun 5113 fun11iun 5453 abrexco 5727 imaiun 5728 fliftf 5767 rexrnmpo 5957 oprabrexex2 6098 releldm2 6153 eroveu 6592 genpassl 7465 genpassu 7466 ltexprlemopl 7542 ltexprlemopu 7544 pceu 12227 ntreq0 12772 metrest 13146 |
Copyright terms: Public domain | W3C validator |