ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexcom4 Unicode version

Theorem rexcom4 2786
Description: Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Assertion
Ref Expression
rexcom4  |-  ( E. x  e.  A  E. y ph  <->  E. y E. x  e.  A  ph )
Distinct variable groups:    x, y    y, A
Allowed substitution hints:    ph( x, y)    A( x)

Proof of Theorem rexcom4
StepHypRef Expression
1 rexcom 2661 . 2  |-  ( E. x  e.  A  E. y  e.  _V  ph  <->  E. y  e.  _V  E. x  e.  A  ph )
2 rexv 2781 . . 3  |-  ( E. y  e.  _V  ph  <->  E. y ph )
32rexbii 2504 . 2  |-  ( E. x  e.  A  E. y  e.  _V  ph  <->  E. x  e.  A  E. y ph )
4 rexv 2781 . 2  |-  ( E. y  e.  _V  E. x  e.  A  ph  <->  E. y E. x  e.  A  ph )
51, 3, 43bitr3i 210 1  |-  ( E. x  e.  A  E. y ph  <->  E. y E. x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   E.wex 1506   E.wrex 2476   _Vcvv 2763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765
This theorem is referenced by:  rexcom4a  2787  reuind  2969  iuncom4  3924  dfiun2g  3949  iunn0m  3978  iunxiun  3999  iinexgm  4188  inuni  4189  iunopab  4317  xpiundi  4722  xpiundir  4723  cnvuni  4853  dmiun  4876  elres  4983  elsnres  4984  rniun  5081  imaco  5176  coiun  5180  fun11iun  5528  abrexco  5809  imaiun  5810  fliftf  5849  rexrnmpo  6042  oprabrexex2  6196  releldm2  6252  eroveu  6694  genpassl  7608  genpassu  7609  ltexprlemopl  7685  ltexprlemopu  7687  pceu  12489  4sqlem12  12596  ntreq0  14452  metrest  14826
  Copyright terms: Public domain W3C validator