| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexcom4 | Unicode version | ||
| Description: Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| rexcom4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexcom 2669 |
. 2
| |
| 2 | rexv 2789 |
. . 3
| |
| 3 | 2 | rexbii 2512 |
. 2
|
| 4 | rexv 2789 |
. 2
| |
| 5 | 1, 3, 4 | 3bitr3i 210 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 df-v 2773 |
| This theorem is referenced by: rexcom4a 2795 reuind 2977 iuncom4 3933 dfiun2g 3958 iunn0m 3987 iunxiun 4008 iinexgm 4197 inuni 4198 iunopab 4327 xpiundi 4732 xpiundir 4733 cnvuni 4863 dmiun 4886 elres 4994 elsnres 4995 rniun 5092 imaco 5187 coiun 5191 fun11iun 5542 abrexco 5827 imaiun 5828 fliftf 5867 rexrnmpo 6060 oprabrexex2 6214 releldm2 6270 eroveu 6712 genpassl 7636 genpassu 7637 ltexprlemopl 7713 ltexprlemopu 7715 pceu 12560 4sqlem12 12667 ntreq0 14546 metrest 14920 |
| Copyright terms: Public domain | W3C validator |