![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexcom4a | GIF version |
Description: Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.) |
Ref | Expression |
---|---|
rexcom4a | ⊢ (∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑦 ∈ 𝐴 (𝜑 ∧ ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexcom4 2762 | . 2 ⊢ (∃𝑦 ∈ 𝐴 ∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓)) | |
2 | 19.42v 1906 | . . 3 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) | |
3 | 2 | rexbii 2484 | . 2 ⊢ (∃𝑦 ∈ 𝐴 ∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑦 ∈ 𝐴 (𝜑 ∧ ∃𝑥𝜓)) |
4 | 1, 3 | bitr3i 186 | 1 ⊢ (∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑦 ∈ 𝐴 (𝜑 ∧ ∃𝑥𝜓)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1492 ∃wrex 2456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-v 2741 |
This theorem is referenced by: rexcom4b 2764 |
Copyright terms: Public domain | W3C validator |