| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexcom4a | GIF version | ||
| Description: Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.) |
| Ref | Expression |
|---|---|
| rexcom4a | ⊢ (∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑦 ∈ 𝐴 (𝜑 ∧ ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexcom4 2796 | . 2 ⊢ (∃𝑦 ∈ 𝐴 ∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓)) | |
| 2 | 19.42v 1931 | . . 3 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) | |
| 3 | 2 | rexbii 2514 | . 2 ⊢ (∃𝑦 ∈ 𝐴 ∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑦 ∈ 𝐴 (𝜑 ∧ ∃𝑥𝜓)) |
| 4 | 1, 3 | bitr3i 186 | 1 ⊢ (∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑦 ∈ 𝐴 (𝜑 ∧ ∃𝑥𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1516 ∃wrex 2486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 |
| This theorem is referenced by: rexcom4b 2798 |
| Copyright terms: Public domain | W3C validator |