ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexpr Unicode version

Theorem rexpr 3632
Description: Convert an existential quantification over a pair to a disjunction. (Contributed by NM, 3-Jun-2007.) (Revised by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ralpr.1  |-  A  e. 
_V
ralpr.2  |-  B  e. 
_V
ralpr.3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
ralpr.4  |-  ( x  =  B  ->  ( ph 
<->  ch ) )
Assertion
Ref Expression
rexpr  |-  ( E. x  e.  { A ,  B } ph  <->  ( ps  \/  ch ) )
Distinct variable groups:    x, A    x, B    ps, x    ch, x
Allowed substitution hint:    ph( x)

Proof of Theorem rexpr
StepHypRef Expression
1 ralpr.1 . 2  |-  A  e. 
_V
2 ralpr.2 . 2  |-  B  e. 
_V
3 ralpr.3 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
4 ralpr.4 . . 3  |-  ( x  =  B  ->  ( ph 
<->  ch ) )
53, 4rexprg 3628 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( E. x  e. 
{ A ,  B } ph  <->  ( ps  \/  ch ) ) )
61, 2, 5mp2an 423 1  |-  ( E. x  e.  { A ,  B } ph  <->  ( ps  \/  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    \/ wo 698    = wceq 1343    e. wcel 2136   E.wrex 2445   _Vcvv 2726   {cpr 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-sn 3582  df-pr 3583
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator