ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexpr Unicode version

Theorem rexpr 3722
Description: Convert an existential quantification over a pair to a disjunction. (Contributed by NM, 3-Jun-2007.) (Revised by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ralpr.1  |-  A  e. 
_V
ralpr.2  |-  B  e. 
_V
ralpr.3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
ralpr.4  |-  ( x  =  B  ->  ( ph 
<->  ch ) )
Assertion
Ref Expression
rexpr  |-  ( E. x  e.  { A ,  B } ph  <->  ( ps  \/  ch ) )
Distinct variable groups:    x, A    x, B    ps, x    ch, x
Allowed substitution hint:    ph( x)

Proof of Theorem rexpr
StepHypRef Expression
1 ralpr.1 . 2  |-  A  e. 
_V
2 ralpr.2 . 2  |-  B  e. 
_V
3 ralpr.3 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
4 ralpr.4 . . 3  |-  ( x  =  B  ->  ( ph 
<->  ch ) )
53, 4rexprg 3718 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( E. x  e. 
{ A ,  B } ph  <->  ( ps  \/  ch ) ) )
61, 2, 5mp2an 426 1  |-  ( E. x  e.  { A ,  B } ph  <->  ( ps  \/  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    \/ wo 713    = wceq 1395    e. wcel 2200   E.wrex 2509   _Vcvv 2799   {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-sn 3672  df-pr 3673
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator