ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralpr Unicode version

Theorem ralpr 3688
Description: Convert a quantification over a pair to a conjunction. (Contributed by NM, 3-Jun-2007.) (Revised by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ralpr.1  |-  A  e. 
_V
ralpr.2  |-  B  e. 
_V
ralpr.3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
ralpr.4  |-  ( x  =  B  ->  ( ph 
<->  ch ) )
Assertion
Ref Expression
ralpr  |-  ( A. x  e.  { A ,  B } ph  <->  ( ps  /\ 
ch ) )
Distinct variable groups:    x, A    x, B    ps, x    ch, x
Allowed substitution hint:    ph( x)

Proof of Theorem ralpr
StepHypRef Expression
1 ralpr.1 . 2  |-  A  e. 
_V
2 ralpr.2 . 2  |-  B  e. 
_V
3 ralpr.3 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
4 ralpr.4 . . 3  |-  ( x  =  B  ->  ( ph 
<->  ch ) )
53, 4ralprg 3684 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A. x  e. 
{ A ,  B } ph  <->  ( ps  /\  ch ) ) )
61, 2, 5mp2an 426 1  |-  ( A. x  e.  { A ,  B } ph  <->  ( ps  /\ 
ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   A.wral 2484   _Vcvv 2772   {cpr 3634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-sbc 2999  df-un 3170  df-sn 3639  df-pr 3640
This theorem is referenced by:  fzprval  10206  xpsfrnel  13209
  Copyright terms: Public domain W3C validator