Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralpr Unicode version

Theorem ralpr 3546
 Description: Convert a quantification over a pair to a conjunction. (Contributed by NM, 3-Jun-2007.) (Revised by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ralpr.1
ralpr.2
ralpr.3
ralpr.4
Assertion
Ref Expression
ralpr
Distinct variable groups:   ,   ,   ,   ,
Allowed substitution hint:   ()

Proof of Theorem ralpr
StepHypRef Expression
1 ralpr.1 . 2
2 ralpr.2 . 2
3 ralpr.3 . . 3
4 ralpr.4 . . 3
53, 4ralprg 3542 . 2
61, 2, 5mp2an 420 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 103   wb 104   wceq 1314   wcel 1463  wral 2391  cvv 2658  cpr 3496 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097 This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-v 2660  df-sbc 2881  df-un 3043  df-sn 3501  df-pr 3502 This theorem is referenced by:  fzprval  9802
 Copyright terms: Public domain W3C validator