ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexprg Unicode version

Theorem rexprg 3674
Description: Convert a quantification over a pair to a disjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ralprg.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
ralprg.2  |-  ( x  =  B  ->  ( ph 
<->  ch ) )
Assertion
Ref Expression
rexprg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( E. x  e. 
{ A ,  B } ph  <->  ( ps  \/  ch ) ) )
Distinct variable groups:    x, A    x, B    ps, x    ch, x
Allowed substitution hints:    ph( x)    V( x)    W( x)

Proof of Theorem rexprg
StepHypRef Expression
1 df-pr 3629 . . . 4  |-  { A ,  B }  =  ( { A }  u.  { B } )
21rexeqi 2698 . . 3  |-  ( E. x  e.  { A ,  B } ph  <->  E. x  e.  ( { A }  u.  { B } )
ph )
3 rexun 3343 . . 3  |-  ( E. x  e.  ( { A }  u.  { B } ) ph  <->  ( E. x  e.  { A } ph  \/  E. x  e.  { B } ph ) )
42, 3bitri 184 . 2  |-  ( E. x  e.  { A ,  B } ph  <->  ( E. x  e.  { A } ph  \/  E. x  e.  { B } ph ) )
5 ralprg.1 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
65rexsng 3663 . . . 4  |-  ( A  e.  V  ->  ( E. x  e.  { A } ph  <->  ps ) )
76orbi1d 792 . . 3  |-  ( A  e.  V  ->  (
( E. x  e. 
{ A } ph  \/  E. x  e.  { B } ph )  <->  ( ps  \/  E. x  e.  { B } ph ) ) )
8 ralprg.2 . . . . 5  |-  ( x  =  B  ->  ( ph 
<->  ch ) )
98rexsng 3663 . . . 4  |-  ( B  e.  W  ->  ( E. x  e.  { B } ph  <->  ch ) )
109orbi2d 791 . . 3  |-  ( B  e.  W  ->  (
( ps  \/  E. x  e.  { B } ph )  <->  ( ps  \/  ch ) ) )
117, 10sylan9bb 462 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( E. x  e.  { A } ph  \/  E. x  e.  { B } ph )  <->  ( ps  \/  ch ) ) )
124, 11bitrid 192 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( E. x  e. 
{ A ,  B } ph  <->  ( ps  \/  ch ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2167   E.wrex 2476    u. cun 3155   {csn 3622   {cpr 3623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-sn 3628  df-pr 3629
This theorem is referenced by:  rextpg  3676  rexpr  3678  minmax  11395  xrminmax  11430
  Copyright terms: Public domain W3C validator