Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexprg | Unicode version |
Description: Convert a quantification over a pair to a disjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.) |
Ref | Expression |
---|---|
ralprg.1 | |
ralprg.2 |
Ref | Expression |
---|---|
rexprg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 3596 | . . . 4 | |
2 | 1 | rexeqi 2675 | . . 3 |
3 | rexun 3313 | . . 3 | |
4 | 2, 3 | bitri 184 | . 2 |
5 | ralprg.1 | . . . . 5 | |
6 | 5 | rexsng 3630 | . . . 4 |
7 | 6 | orbi1d 791 | . . 3 |
8 | ralprg.2 | . . . . 5 | |
9 | 8 | rexsng 3630 | . . . 4 |
10 | 9 | orbi2d 790 | . . 3 |
11 | 7, 10 | sylan9bb 462 | . 2 |
12 | 4, 11 | bitrid 192 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wo 708 wceq 1353 wcel 2146 wrex 2454 cun 3125 csn 3589 cpr 3590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rex 2459 df-v 2737 df-sbc 2961 df-un 3131 df-sn 3595 df-pr 3596 |
This theorem is referenced by: rextpg 3643 rexpr 3645 minmax 11204 xrminmax 11239 |
Copyright terms: Public domain | W3C validator |